Dynamic Sampling in Convolutional Neural Networks for Imbalanced Data Classification

Samira Pouyanfar, Yudong Tao, A. Mohan, Haiman Tian, Ahmed S. Kaseb, Kent W. Gauen, Ryan Dailey, Sara Aghajanzadeh, Yung-Hsiang Lu, Shu‐Ching Chen, M. Shyu
{"title":"Dynamic Sampling in Convolutional Neural Networks for Imbalanced Data Classification","authors":"Samira Pouyanfar, Yudong Tao, A. Mohan, Haiman Tian, Ahmed S. Kaseb, Kent W. Gauen, Ryan Dailey, Sara Aghajanzadeh, Yung-Hsiang Lu, Shu‐Ching Chen, M. Shyu","doi":"10.1109/MIPR.2018.00027","DOIUrl":null,"url":null,"abstract":"Many multimedia systems stream real-time visual data continuously for a wide variety of applications. These systems can produce vast amounts of data, but few studies take advantage of the versatile and real-time data. This paper presents a novel model based on the Convolutional Neural Networks (CNNs) to handle such imbalanced and heterogeneous data and successfully identifies the semantic concepts in these multimedia systems. The proposed model can discover the semantic concepts from the data with a skewed distribution using a dynamic sampling technique. The paper also presents a system that can retrieve real-time visual data from heterogeneous cameras, and the run-time environment allows the analysis programs to process the data from thousands of cameras simultaneously. The evaluation results in comparison with several state-of-the-art methods demonstrate the ability and effectiveness of the proposed model on visual data captured by public network cameras.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

Many multimedia systems stream real-time visual data continuously for a wide variety of applications. These systems can produce vast amounts of data, but few studies take advantage of the versatile and real-time data. This paper presents a novel model based on the Convolutional Neural Networks (CNNs) to handle such imbalanced and heterogeneous data and successfully identifies the semantic concepts in these multimedia systems. The proposed model can discover the semantic concepts from the data with a skewed distribution using a dynamic sampling technique. The paper also presents a system that can retrieve real-time visual data from heterogeneous cameras, and the run-time environment allows the analysis programs to process the data from thousands of cameras simultaneously. The evaluation results in comparison with several state-of-the-art methods demonstrate the ability and effectiveness of the proposed model on visual data captured by public network cameras.
卷积神经网络在不平衡数据分类中的动态采样
许多多媒体系统为各种各样的应用提供连续的实时视觉数据流。这些系统可以产生大量的数据,但很少有研究利用了多用途和实时的数据。本文提出了一种基于卷积神经网络(cnn)的新模型来处理这些不平衡和异构的数据,并成功地识别了这些多媒体系统中的语义概念。该模型采用动态采样技术,从倾斜分布的数据中发现语义概念。本文还介绍了一个能够从异构摄像机中检索实时视觉数据的系统,其运行环境允许分析程序同时处理来自数千台摄像机的数据。与几种最先进的方法进行比较的评估结果表明,所提出的模型对公共网络摄像机捕获的视觉数据具有能力和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信