Impact of correlation errors on the optimum Kalman filter gain identification in a single sensor environment

R. Cardoso, E. M. Hemerly, H. T. Camara, H. Gründling
{"title":"Impact of correlation errors on the optimum Kalman filter gain identification in a single sensor environment","authors":"R. Cardoso, E. M. Hemerly, H. T. Camara, H. Gründling","doi":"10.1109/IAS.2004.1348666","DOIUrl":null,"url":null,"abstract":"The impact of errors in the innovation correlation functions evaluation, related to the suboptimal filter, on the identification of the optimum steady state Kalman filter gains are investigated. This issue arises in all real time applications, where the correlations must be calculated from experimental data. An identification algorithm proposed in the literature, with formal proof of convergence, is revisited and summarized. Based on this algorithm, equations describing this impact are developed. Simulation results are presented and discussed. As contribution, experimental results of the identification algorithm, applied to estimate the states of a position servo systems, are presented.","PeriodicalId":131410,"journal":{"name":"Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2004.1348666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The impact of errors in the innovation correlation functions evaluation, related to the suboptimal filter, on the identification of the optimum steady state Kalman filter gains are investigated. This issue arises in all real time applications, where the correlations must be calculated from experimental data. An identification algorithm proposed in the literature, with formal proof of convergence, is revisited and summarized. Based on this algorithm, equations describing this impact are developed. Simulation results are presented and discussed. As contribution, experimental results of the identification algorithm, applied to estimate the states of a position servo systems, are presented.
单传感器环境下相关误差对最佳卡尔曼滤波器增益辨识的影响
研究了与次优滤波器相关的创新相关函数评价误差对最优稳态卡尔曼滤波器增益辨识的影响。这个问题出现在所有的实时应用程序中,其中的相关性必须从实验数据中计算出来。在文献中提出的一种识别算法,具有收敛的形式化证明,被重新审视和总结。基于该算法,建立了描述这种影响的方程。给出了仿真结果并进行了讨论。作为贡献,给出了该辨识算法用于位置伺服系统状态估计的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信