Demands for Bridging Power Electronics and Power System Engineering Concepts

S. Peyghami, F. Blaabjerg
{"title":"Demands for Bridging Power Electronics and Power System Engineering Concepts","authors":"S. Peyghami, F. Blaabjerg","doi":"10.1109/eGRID48559.2020.9330663","DOIUrl":null,"url":null,"abstract":"Power electronics are becoming an underpinning technology for development of future electric energy systems. Proliferation of power converters will affect the dynamic and static performance of power systems. Thus, design, planning and operation of power systems should take into account the converter dynamics and also static models. Moreover, control, design and manufacturing of converters require considering their interactions with the entire power system performance. This paper highlights the importance of bridging power electronics and power system engineering concepts in future power systems. First, different concepts of power electronics and power system engineering is discussed. Afterwards, the necessity for bridging these two areas are explained. Finally, numerical case studies on a DC microgrid are provided for illustrating the needs for bridging these concepts.","PeriodicalId":296524,"journal":{"name":"2020 5th IEEE Workshop on the Electronic Grid (eGRID)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE Workshop on the Electronic Grid (eGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eGRID48559.2020.9330663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power electronics are becoming an underpinning technology for development of future electric energy systems. Proliferation of power converters will affect the dynamic and static performance of power systems. Thus, design, planning and operation of power systems should take into account the converter dynamics and also static models. Moreover, control, design and manufacturing of converters require considering their interactions with the entire power system performance. This paper highlights the importance of bridging power electronics and power system engineering concepts in future power systems. First, different concepts of power electronics and power system engineering is discussed. Afterwards, the necessity for bridging these two areas are explained. Finally, numerical case studies on a DC microgrid are provided for illustrating the needs for bridging these concepts.
桥接电力电子和电力系统工程概念的需求
电力电子技术正在成为未来电力能源系统发展的基础技术。电源变流器的激增将影响电力系统的动态和静态性能。因此,电力系统的设计、规划和运行既要考虑变流器的动态模型,也要考虑变流器的静态模型。此外,变流器的控制、设计和制造需要考虑它们与整个电力系统性能的相互作用。本文强调了在未来的电力系统中,桥梁电力电子学和电力系统工程概念的重要性。首先,讨论了电力电子学和电力系统工程的不同概念。然后,解释了连接这两个领域的必要性。最后,提供了直流微电网的数值案例研究,以说明桥接这些概念的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信