Nilanjan Pal, A. Fish, W. McIntyre, Nathanael Griesert, Greg Winter, Travis Eichhorn, R. Pilawa-Podgurski, P. Hanumolu
{"title":"A 91% efficient 30V hybrid boost-SC converter based backlight LED driver in 180nm CMOS","authors":"Nilanjan Pal, A. Fish, W. McIntyre, Nathanael Griesert, Greg Winter, Travis Eichhorn, R. Pilawa-Podgurski, P. Hanumolu","doi":"10.1109/CICC48029.2020.9075886","DOIUrl":null,"url":null,"abstract":"This paper presents a new hybrid boost converter architecture for improving the efficiency of LED drivers used in mobile applications. By cascading a low-switching frequency time-interleaved series-parallel SC-stage with an inductive boost converter, we facilitate the use of lower voltage rated switches, thus greatly reducing the switching losses. Charge-sharing losses of the SC stage are minimized by soft-charging flying capacitors with the inductor of the boost stage. Fabricated in 180nm BCD process, the prototype converter generates 30V output voltage from a Li-ion battery source and can provide a load current in the range of 0 to 100mA with an excellent peak power efficiency of 91.15% at 30mA. Compared to state-of-the-art designs, the proposed converter achieves a 3 % improvement in peak power efficiency.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new hybrid boost converter architecture for improving the efficiency of LED drivers used in mobile applications. By cascading a low-switching frequency time-interleaved series-parallel SC-stage with an inductive boost converter, we facilitate the use of lower voltage rated switches, thus greatly reducing the switching losses. Charge-sharing losses of the SC stage are minimized by soft-charging flying capacitors with the inductor of the boost stage. Fabricated in 180nm BCD process, the prototype converter generates 30V output voltage from a Li-ion battery source and can provide a load current in the range of 0 to 100mA with an excellent peak power efficiency of 91.15% at 30mA. Compared to state-of-the-art designs, the proposed converter achieves a 3 % improvement in peak power efficiency.