Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation

Ahmed Y. Tawfik, M. Emam, Khaled Essam, Robert Nabil, Hany Hassan
{"title":"Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation","authors":"Ahmed Y. Tawfik, M. Emam, Khaled Essam, Robert Nabil, Hany Hassan","doi":"10.18653/v1/W19-4602","DOIUrl":null,"url":null,"abstract":"Parallel corpora available for building machine translation (MT) models for dialectal Arabic (DA) are rather limited. The scarcity of resources has prompted the use of Modern Standard Arabic (MSA) abundant resources to complement the limited dialectal resource. However, dialectal clitics often differ between MSA and DA. This paper compares morphology-aware DA word segmentation to other word segmentation approaches like Byte Pair Encoding (BPE) and Sub-word Regularization (SR). A set of experiments conducted on Egyptian Arabic (EA), Levantine Arabic (LA), and Gulf Arabic (GA) show that a sufficiently accurate morphology-aware segmentation used in conjunction with BPE outperforms the other word segmentation approaches.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Parallel corpora available for building machine translation (MT) models for dialectal Arabic (DA) are rather limited. The scarcity of resources has prompted the use of Modern Standard Arabic (MSA) abundant resources to complement the limited dialectal resource. However, dialectal clitics often differ between MSA and DA. This paper compares morphology-aware DA word segmentation to other word segmentation approaches like Byte Pair Encoding (BPE) and Sub-word Regularization (SR). A set of experiments conducted on Egyptian Arabic (EA), Levantine Arabic (LA), and Gulf Arabic (GA) show that a sufficiently accurate morphology-aware segmentation used in conjunction with BPE outperforms the other word segmentation approaches.
阿拉伯文方言词法感知分词的神经网络机器翻译
可用于建立阿拉伯方言机器翻译模型的平行语料库相当有限。资源的匮乏促使现代标准阿拉伯语以丰富的资源来补充有限的方言资源。然而,MSA和DA之间的方言政治往往不同。本文将意识形态的数据处理分词方法与其他分词方法如字节对编码(BPE)和子词正则化(SR)进行了比较。对埃及阿拉伯语(EA)、黎凡特阿拉伯语(LA)和海湾阿拉伯语(GA)进行的一组实验表明,与BPE结合使用的足够精确的形态感知分词优于其他分词方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信