GLS-based TV-CAR speech analysis using forward and backward linear prediction

K. Funaki
{"title":"GLS-based TV-CAR speech analysis using forward and backward linear prediction","authors":"K. Funaki","doi":"10.1109/MMSP.2002.1203283","DOIUrl":null,"url":null,"abstract":"We have already proposed novel robust parameter estimation algorithms of a time-varying complex AR (TV-CAR) model for analytic speech signals, which are based on GLS (generalized least squares) and ELS (extended least squares) and have shown that the methods can achieve robust speech spectrum estimation against additive white Gaussian. In these methods, forward prediction error is only used to calculate the MSE criterion. This paper proposes the improved TV-CAR speech analysis methods based on forward and backward linear prediction in which backward prediction error is also adopted to calculate the MSE criterion, viz., the MMSE and GLS-based algorithms using the forward and backward prediction. The experiments with natural speech and natural speech corrupted by white Gaussian demonstrate that the improved methods can achieve more accurate and more stable spectral estimation.","PeriodicalId":398813,"journal":{"name":"2002 IEEE Workshop on Multimedia Signal Processing.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Workshop on Multimedia Signal Processing.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2002.1203283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We have already proposed novel robust parameter estimation algorithms of a time-varying complex AR (TV-CAR) model for analytic speech signals, which are based on GLS (generalized least squares) and ELS (extended least squares) and have shown that the methods can achieve robust speech spectrum estimation against additive white Gaussian. In these methods, forward prediction error is only used to calculate the MSE criterion. This paper proposes the improved TV-CAR speech analysis methods based on forward and backward linear prediction in which backward prediction error is also adopted to calculate the MSE criterion, viz., the MMSE and GLS-based algorithms using the forward and backward prediction. The experiments with natural speech and natural speech corrupted by white Gaussian demonstrate that the improved methods can achieve more accurate and more stable spectral estimation.
基于gls的TV-CAR语音前向和后向线性预测分析
我们已经提出了一种新的基于广义最小二乘(GLS)和扩展最小二乘(ELS)的时变复AR (TV-CAR)模型的鲁棒参数估计算法,用于分析语音信号,并表明该方法可以实现对加性白高斯的鲁棒语音频谱估计。在这些方法中,前向预测误差仅用于计算MSE准则。本文提出了基于前向和后向线性预测的改进TV-CAR语音分析方法,其中利用后向预测误差计算MSE准则,即利用前向和后向预测的MMSE和基于gls的算法。自然语音和受白高斯干扰的自然语音实验表明,改进后的方法可以获得更准确、更稳定的频谱估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信