Effect of Angular Acceleration and Unbalance Force Orientation on the Backward Whirl in Cracked Rotors

Fatima AlHammadi, M. Al-Shudeifat, Oleg Shiryayev
{"title":"Effect of Angular Acceleration and Unbalance Force Orientation on the Backward Whirl in Cracked Rotors","authors":"Fatima AlHammadi, M. Al-Shudeifat, Oleg Shiryayev","doi":"10.1115/IMECE2018-87476","DOIUrl":null,"url":null,"abstract":"Rotors have wide applications in several aerospace and industrial heavy-duty systems. In most of these applications, the rotating system reaches its steady state operational speed after the passage through at least one of its critical rotational speeds. In real-life applications, the probable appearance of a residual slight unbalance in the system could cause an elevation in vibration amplitudes at the critical rotational speeds. Accordingly, propagation of cracks in rotating shafts usually influences the level of these vibration amplitudes during start-up and cost-down operations. For such rotating systems, the critical whirl speeds are usually associated with forward and backward whirl responses where it has been always assumed that the backward whirl zone should precede the forward whirl zone. Here, two configurations of cracked rotor-disk systems are considered to study the effect of the angular acceleration and the unbalance force vector orientation with respect to the crack opening direction on the whirl response at the backward whirl zone of rotational speeds. The obtained numerical simulation results are verified through a robust experimental testing for system startup operations. The backward whirl zone is found here to appear immediately after the passage through the critical forward whirl rotational speed. The onset of the backward whirl is also found to be associated with a sharp drop in vibration whirl amplitudes. This backward whirl zone is found to be significantly affected by the unbalance force angle vector orientation and the shaft angular acceleration. More importantly, this zone of backward whirl orbits is not found to be preceding the critical forward whirl zone for the considered cracked shaft-disk configurations.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Rotors have wide applications in several aerospace and industrial heavy-duty systems. In most of these applications, the rotating system reaches its steady state operational speed after the passage through at least one of its critical rotational speeds. In real-life applications, the probable appearance of a residual slight unbalance in the system could cause an elevation in vibration amplitudes at the critical rotational speeds. Accordingly, propagation of cracks in rotating shafts usually influences the level of these vibration amplitudes during start-up and cost-down operations. For such rotating systems, the critical whirl speeds are usually associated with forward and backward whirl responses where it has been always assumed that the backward whirl zone should precede the forward whirl zone. Here, two configurations of cracked rotor-disk systems are considered to study the effect of the angular acceleration and the unbalance force vector orientation with respect to the crack opening direction on the whirl response at the backward whirl zone of rotational speeds. The obtained numerical simulation results are verified through a robust experimental testing for system startup operations. The backward whirl zone is found here to appear immediately after the passage through the critical forward whirl rotational speed. The onset of the backward whirl is also found to be associated with a sharp drop in vibration whirl amplitudes. This backward whirl zone is found to be significantly affected by the unbalance force angle vector orientation and the shaft angular acceleration. More importantly, this zone of backward whirl orbits is not found to be preceding the critical forward whirl zone for the considered cracked shaft-disk configurations.
角加速度和不平衡力方向对裂纹转子后旋的影响
转子在航空航天和工业重型系统中有着广泛的应用。在大多数这些应用中,旋转系统在通过至少一个临界转速后达到其稳态运行速度。在实际应用中,系统中残留的轻微不平衡可能会导致临界转速下振动幅度的升高。因此,在启动和降低成本的操作过程中,旋转轴裂纹的扩展通常会影响这些振动幅度的水平。对于这样的旋转系统,临界涡速通常与前向和后向涡响应有关,并且一直假设后向涡区应先于前向涡区。本文考虑裂纹转子-盘系统的两种构型,研究了角加速度和相对于裂纹张开方向的不平衡力矢量方向对转速后向旋涡区的旋涡响应的影响。通过对系统启动运行的鲁棒实验测试,验证了数值模拟结果。后旋区在通过临界前旋转速后立即出现。向后旋转的开始也被发现与振动旋转幅度的急剧下降有关。该后旋区受不平衡力角矢量方向和轴角加速度的显著影响。更重要的是,对于考虑裂纹的轴盘结构,这个向后旋转轨道区域没有被发现在临界向前旋转区域之前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信