SAR Image Classification using Transfer Learning

R. Praneetha, T. Dhipu, R. Rajesh
{"title":"SAR Image Classification using Transfer Learning","authors":"R. Praneetha, T. Dhipu, R. Rajesh","doi":"10.1109/ICORT52730.2021.9581609","DOIUrl":null,"url":null,"abstract":"Automatic Target Recognition (ATR) is a prominent step in Maritime Domain Awareness (MDA). These missions are aided by data from multiple sensors like Electro Optic-Infrared (EO/IR) cameras, Synthetic Aperture Radar (SAR), etc. Recent studies of classifying SAR images have been accomplished using supervised deep learning techniques to enhance the performance of classification. In this paper, we use transfer learning on VGG-16 architecture pre-trained on ImageNet dataset. The VGG-16 architecture is extended using a 2-step modular approach for the data classes in MASATI-V2 binary and MSTAR-SAR multiclass datasets. The model is then trained by suitable tuning of hyperparameters, and we report accuracies of 100% for binary classification and 99.18% for SAR multiclass classification. This approach reduces the overfitting in case of smaller dataset volume that is typical in SAR imagery in maritime domain, while reducing the time taken for training and deployment of the model.","PeriodicalId":344816,"journal":{"name":"2021 2nd International Conference on Range Technology (ICORT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Range Technology (ICORT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORT52730.2021.9581609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic Target Recognition (ATR) is a prominent step in Maritime Domain Awareness (MDA). These missions are aided by data from multiple sensors like Electro Optic-Infrared (EO/IR) cameras, Synthetic Aperture Radar (SAR), etc. Recent studies of classifying SAR images have been accomplished using supervised deep learning techniques to enhance the performance of classification. In this paper, we use transfer learning on VGG-16 architecture pre-trained on ImageNet dataset. The VGG-16 architecture is extended using a 2-step modular approach for the data classes in MASATI-V2 binary and MSTAR-SAR multiclass datasets. The model is then trained by suitable tuning of hyperparameters, and we report accuracies of 100% for binary classification and 99.18% for SAR multiclass classification. This approach reduces the overfitting in case of smaller dataset volume that is typical in SAR imagery in maritime domain, while reducing the time taken for training and deployment of the model.
基于迁移学习的SAR图像分类
自动目标识别(ATR)是海域感知(MDA)的重要步骤。这些任务是由多个传感器,如光电红外(EO/IR)相机,合成孔径雷达(SAR)等数据辅助的。近年来对SAR图像进行分类的研究主要是利用监督深度学习技术来提高分类性能。在本文中,我们在ImageNet数据集上预训练的VGG-16架构上使用迁移学习。VGG-16架构使用两步模块化方法扩展了MASATI-V2二进制和MSTAR-SAR多类数据集中的数据类。然后通过适当的超参数调整对模型进行训练,我们报告了二元分类的准确率为100%,SAR多类分类的准确率为99.18%。该方法减少了海洋领域SAR图像中典型的数据集体积较小的情况下的过拟合,同时减少了模型训练和部署所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信