Analysis of Subtopic Discovery Algorithms for Real-time Information Summarization

Gustavo Gonçalves, Flávio Martins, João Magalhães
{"title":"Analysis of Subtopic Discovery Algorithms for Real-time Information Summarization","authors":"Gustavo Gonçalves, Flávio Martins, João Magalhães","doi":"10.1145/3184558.3191651","DOIUrl":null,"url":null,"abstract":"The rise of large data streams introduces new challenges regarding the delivery of relevant content towards an information need. This need can be seen as a broad topic of information. By identifying sub-streams within a broader data stream, we can retrieve relevant content that matches the multiple facets of the topic; thus summarizing information, and matching the initial need. In this paper, we propose to study the generation of sub-streams over time and compare various aggregation methods to summarize information. Our experiments were made using the standard TREC Real-Time Summarization (RTS) 2017 dataset.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The rise of large data streams introduces new challenges regarding the delivery of relevant content towards an information need. This need can be seen as a broad topic of information. By identifying sub-streams within a broader data stream, we can retrieve relevant content that matches the multiple facets of the topic; thus summarizing information, and matching the initial need. In this paper, we propose to study the generation of sub-streams over time and compare various aggregation methods to summarize information. Our experiments were made using the standard TREC Real-Time Summarization (RTS) 2017 dataset.
面向实时信息摘要的子主题发现算法分析
大数据流的兴起为信息需求的相关内容的传递带来了新的挑战。这种需求可以看作是一个广泛的信息主题。通过识别更广泛的数据流中的子流,我们可以检索与主题的多个方面相匹配的相关内容;从而总结信息,并匹配初始需求。在本文中,我们建议研究子流随时间的产生,并比较各种聚合方法来总结信息。我们的实验使用标准的TREC实时摘要(RTS) 2017数据集进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信