Will Sorafenib Help?: Treatment-aware Reranking in Precision Medicine Search

Maciej Rybiński, Sarvnaz Karimi
{"title":"Will Sorafenib Help?: Treatment-aware Reranking in Precision Medicine Search","authors":"Maciej Rybiński, Sarvnaz Karimi","doi":"10.1145/3459637.3482220","DOIUrl":null,"url":null,"abstract":"High-quality evidence from the biomedical literature is crucial for decision making of oncologists who treat cancer patients. Search for evidence on a specific treatment for a patient is the challenge set by the precision medicine track of TREC in 2020. To address this challenge, we propose a two-step method to incorporate treatment into the query formulation and ranking. Training of such ranking function uses a zero-shot setup to incorporate the novel focus on treatments which did not exist in any of the previous TREC tracks. Our treatment-aware neural reranking approach, FAT, achieves state-of-the-art effectiveness for TREC Precision Medicine 2020. Our analysis indicates that the BERT-based rerankers automatically learn to score documents through identifying concepts relevant to precision medicine, similar to hand-crafted heuristics successful in the earlier studies.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High-quality evidence from the biomedical literature is crucial for decision making of oncologists who treat cancer patients. Search for evidence on a specific treatment for a patient is the challenge set by the precision medicine track of TREC in 2020. To address this challenge, we propose a two-step method to incorporate treatment into the query formulation and ranking. Training of such ranking function uses a zero-shot setup to incorporate the novel focus on treatments which did not exist in any of the previous TREC tracks. Our treatment-aware neural reranking approach, FAT, achieves state-of-the-art effectiveness for TREC Precision Medicine 2020. Our analysis indicates that the BERT-based rerankers automatically learn to score documents through identifying concepts relevant to precision medicine, similar to hand-crafted heuristics successful in the earlier studies.
索拉非尼有帮助吗?:精准医学搜索中的治疗意识重排序
来自生物医学文献的高质量证据对于治疗癌症患者的肿瘤学家的决策至关重要。寻找针对患者的特定治疗的证据是2020年TREC精准医学轨道所面临的挑战。为了解决这一挑战,我们提出了一个两步方法,将处理合并到查询公式和排名中。这种排序函数的训练使用了零射击设置,以结合以前任何TREC轨道中都不存在的新颖治疗焦点。我们的治疗感知神经重新排序方法,FAT,为TREC精准医学2020实现了最先进的有效性。我们的分析表明,基于bert的重新排序器通过识别与精准医学相关的概念来自动学习对文档进行评分,类似于早期研究中成功的手工启发式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信