Form

Gesine Manuwald
{"title":"Form","authors":"Gesine Manuwald","doi":"10.5040/9781350187603.ch-001","DOIUrl":null,"url":null,"abstract":"ホ1ウ2Toyota Technological Insti 血1te. Hisakata2−12−1,Tenpaku−ku, Nagoy嬬 468−8511Japan lnthis paper, wc prescnt a parameter一丘ee optimization method for finding the smooth optimal free −form ofa shell structure . The strength design problem dealt with in this paper involves a minmax problem of von Mises stress . The optimum design problem is fbrmulated as a distributed −parameter shape optimization problem under the assumptions a she11 is varied in the out −of plane direction to the sur 飴ce and the thickness was constant. The Kreisselmeier −Steinhauser 負mction is used to transpose the local ilnctional of maximum stress to global integral fUnctional so as to avoid non −diffヒrentiability 。 The shape gradient function and the optimality conditions are derived using the material derivative","PeriodicalId":119645,"journal":{"name":"A Cultural History of Comedy in Antiquity","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Cultural History of Comedy in Antiquity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5040/9781350187603.ch-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ホ1ウ2Toyota Technological Insti 血1te. Hisakata2−12−1,Tenpaku−ku, Nagoy嬬 468−8511Japan lnthis paper, wc prescnt a parameter一丘ee optimization method for finding the smooth optimal free −form ofa shell structure . The strength design problem dealt with in this paper involves a minmax problem of von Mises stress . The optimum design problem is fbrmulated as a distributed −parameter shape optimization problem under the assumptions a she11 is varied in the out −of plane direction to the sur 飴ce and the thickness was constant. The Kreisselmeier −Steinhauser 負mction is used to transpose the local ilnctional of maximum stress to global integral fUnctional so as to avoid non −diffヒrentiability 。 The shape gradient function and the optimality conditions are derived using the material derivative
形式
2丰田技术研究所。本文提出了一种求壳结构光滑最优自由形的参数优化方法。本文所处理的强度设计问题涉及到冯米塞斯应力的极小极大问题。本文将优化设计问题描述为一个分布参数形状优化问题,该优化设计问题是在假设厚度为恒定的情况下,在平面外方向上的厚度是变化的。采用Kreisselmeier - Steinhauser动作将最大应力的局部泛函转化为全局积分泛函,以避免非差分泛函性。利用材料导数导出了形状梯度函数和最优性条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信