Nominal Presentation of Cubical Sets Models of Type Theory

A. Pitts
{"title":"Nominal Presentation of Cubical Sets Models of Type Theory","authors":"A. Pitts","doi":"10.4230/LIPIcs.TYPES.2014.202","DOIUrl":null,"url":null,"abstract":"The cubical sets model of Homotopy Type Theory introduced by Bezem, Coquand and Huber uses a particular category of presheaves. We show that this presheaf category is equivalent to a category of sets equipped with an action of a monoid of name substitutions for which a finite support property holds. That category is in turn isomorphic to a category of nominal sets equipped with operations for substituting constants 0 and 1 for names. This formulation of cubical sets brings out the potentially useful connection that exists between the homotopical notion of path and the nominal sets notion of name abstraction. The formulation in terms of actions of monoids of name substitutions also encompasses a variant category of cubical sets with diagonals, equivalent to presheaves on Grothendieck's \"smallest test category.\" We show that this category has the pleasant property that path objects given by name abstraction are exponentials with respect to an interval object.","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2014.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The cubical sets model of Homotopy Type Theory introduced by Bezem, Coquand and Huber uses a particular category of presheaves. We show that this presheaf category is equivalent to a category of sets equipped with an action of a monoid of name substitutions for which a finite support property holds. That category is in turn isomorphic to a category of nominal sets equipped with operations for substituting constants 0 and 1 for names. This formulation of cubical sets brings out the potentially useful connection that exists between the homotopical notion of path and the nominal sets notion of name abstraction. The formulation in terms of actions of monoids of name substitutions also encompasses a variant category of cubical sets with diagonals, equivalent to presheaves on Grothendieck's "smallest test category." We show that this category has the pleasant property that path objects given by name abstraction are exponentials with respect to an interval object.
类型论的三次集模型的标称表示
Bezem、Coquand和Huber提出的同伦型理论的三次集模型使用了一类特殊的预轴。我们证明了这个预表范畴等价于一个集合的范畴,该范畴具有一个有限支持性质,它具有名称替换的单似群的作用。这个范畴又同构于一个名称集合的范畴,该范畴具有用常数0和1替换名称的操作。这种三次集的表述揭示了路径的同调概念和名称抽象的名义集概念之间存在的潜在有用的联系。关于名称替换的单群的作用的表述也包含了具有对角线的立方集的一个变体范畴,相当于Grothendieck“最小测试范畴”上的presheaves。我们证明了这一类具有一个令人愉快的性质,即由名称抽象给出的路径对象是区间对象的指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信