The entity-to-algorithm allocation problem: extending the analysis

J. Grobler, A. Engelbrecht, G. Kendall, V. Yadavalli
{"title":"The entity-to-algorithm allocation problem: extending the analysis","authors":"J. Grobler, A. Engelbrecht, G. Kendall, V. Yadavalli","doi":"10.1109/CIEL.2014.7015744","DOIUrl":null,"url":null,"abstract":"This paper extends the investigation into the algorithm selection problem in hyper-heuristics, otherwise referred to as the entity-to-algorithm allocation problem, introduced by Grobler et al.. Two newly developed population-based portfolio algorithms (the evolutionary algorithm based on selfadaptive learning population search techniques (EEA-SLPS) and the Multi-EA algorithm) are compared to two metahyper- heuristic algorithms. The algorithms are evaluated under similar conditions and the same set of constituent algorithms on a diverse set of floating-point benchmark problems. One of the meta-hyper-heuristics are shown to outperform the other algorithms, with EEA-SLPS coming in a close second.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper extends the investigation into the algorithm selection problem in hyper-heuristics, otherwise referred to as the entity-to-algorithm allocation problem, introduced by Grobler et al.. Two newly developed population-based portfolio algorithms (the evolutionary algorithm based on selfadaptive learning population search techniques (EEA-SLPS) and the Multi-EA algorithm) are compared to two metahyper- heuristic algorithms. The algorithms are evaluated under similar conditions and the same set of constituent algorithms on a diverse set of floating-point benchmark problems. One of the meta-hyper-heuristics are shown to outperform the other algorithms, with EEA-SLPS coming in a close second.
实体-算法分配问题:扩展分析
本文扩展了对超启发式算法选择问题的研究,也称为实体到算法的分配问题,由Grobler等人提出。将两种新发展的基于种群的组合算法(基于自适应学习种群搜索技术的进化算法(EEA-SLPS)和Multi-EA算法)与两种元超启发式算法进行了比较。在不同的浮点基准问题上,对这些算法在相似的条件下和相同的组成算法集进行了评估。其中一种元超启发式算法表现优于其他算法,EEA-SLPS紧随其后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信