Survival analysis

Bendix Carstensen
{"title":"Survival analysis","authors":"Bendix Carstensen","doi":"10.1093/oso/9780198841326.003.0009","DOIUrl":null,"url":null,"abstract":"This chapter describes survival analysis. Survival analysis concerns data where the outcome is a length of time, namely the time from inclusion in the study (such as diagnosis of some disease) till death or some other event — hence the term 'time to event analysis', which is also used. There are two primary targets normally addressed in survival analysis: survival probabilities and event rates. The chapter then looks at the life table estimator of survival function and the Kaplan–Meier estimator of survival. It also considers the Cox model and its relationship with Poisson models, as well as the Fine–Gray approach to competing risks.","PeriodicalId":177736,"journal":{"name":"Epidemiology with R","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology with R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841326.003.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter describes survival analysis. Survival analysis concerns data where the outcome is a length of time, namely the time from inclusion in the study (such as diagnosis of some disease) till death or some other event — hence the term 'time to event analysis', which is also used. There are two primary targets normally addressed in survival analysis: survival probabilities and event rates. The chapter then looks at the life table estimator of survival function and the Kaplan–Meier estimator of survival. It also considers the Cox model and its relationship with Poisson models, as well as the Fine–Gray approach to competing risks.
生存分析
本章描述了生存分析。生存分析关注的是结果是一段时间的数据,即从纳入研究(如某些疾病的诊断)到死亡或其他事件的时间——因此也使用了术语“事件时间分析”。在生存分析中通常有两个主要目标:生存概率和事件发生率。然后,本章研究了生存函数的生命表估计量和生存的Kaplan-Meier估计量。它还考虑了Cox模型及其与泊松模型的关系,以及竞争风险的Fine-Gray方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信