Opponent Resource Prediction in StarCraft Using Imperfect Information

W. Hamilton, M. Shafiq
{"title":"Opponent Resource Prediction in StarCraft Using Imperfect Information","authors":"W. Hamilton, M. Shafiq","doi":"10.1109/ICBK.2018.00056","DOIUrl":null,"url":null,"abstract":"The real-time strategy (RTS) game StarCraft has recently become a focus of research on game AI. A major challenge in RTS gameplay is making decisions using imperfect information about the opponent's state and actions. One approach that has proven rewarding is to apply machine learning techniques to replays of games between skilled human players. We consider the problem of estimating the number of resources gathered by the opponent during a StarCraft match. We introduce and evaluate two techniques for opponent resource prediction using supervised learning on match replays. Our first method uses multiple linear regression on observable features of the game state. Our second method uses naïve Bayes classification to form imprecise but accurate predictions.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The real-time strategy (RTS) game StarCraft has recently become a focus of research on game AI. A major challenge in RTS gameplay is making decisions using imperfect information about the opponent's state and actions. One approach that has proven rewarding is to apply machine learning techniques to replays of games between skilled human players. We consider the problem of estimating the number of resources gathered by the opponent during a StarCraft match. We introduce and evaluate two techniques for opponent resource prediction using supervised learning on match replays. Our first method uses multiple linear regression on observable features of the game state. Our second method uses naïve Bayes classification to form imprecise but accurate predictions.
基于不完全信息的《星际争霸》对手资源预测
即时战略游戏《星际争霸》最近成为游戏AI研究的热点。RTS玩法中的一个主要挑战是使用关于对手状态和行动的不完全信息做出决策。一种被证明有益的方法是将机器学习技术应用于熟练的人类玩家之间的游戏回放。我们考虑在《星际争霸》比赛中估算对手收集的资源数量的问题。我们介绍并评估了两种利用监督学习对比赛重播进行对手资源预测的技术。我们的第一种方法是对游戏状态的可观察特征使用多元线性回归。我们的第二种方法使用naïve贝叶斯分类来形成不精确但准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信