Multicore Based Spatialk-dominant Skyline Computation

M. A. Siddique, Asif Zaman, Md. Mahbubul Islam, Y. Morimoto
{"title":"Multicore Based Spatialk-dominant Skyline Computation","authors":"M. A. Siddique, Asif Zaman, Md. Mahbubul Islam, Y. Morimoto","doi":"10.1109/ICNC.2012.36","DOIUrl":null,"url":null,"abstract":"We consider k-dominant skyline computation when the underlying dataset is partitioned into geographically distant computing core that are connected to the coordinator (server). The existing k-dominant skyline solutions are not suitable for our problem, because they are restricted to centralized query processors, limiting scalability and imposing a single point of failure. Moreover, k-dominant skyline computation does not follow transitivity property like skyline computation. In this paper, we developed a multicore based spatial k-dominant skyline (MSKS) computation algorithm. MSKS is a feedback-driven mechanism, where the coordinator iteratively transmits data to each computing core. Computing core is able to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Furthermore, it supports a user-friendly progress indicator that allows user to modify (insert, delete, and update) and monitor the progress of long running k-dominant skyline queries. Extensive performance study shows that proposed algorithm is efficient and robust to different data distributions and achieves its progressive goal with a minimal overhead.","PeriodicalId":442973,"journal":{"name":"2012 Third International Conference on Networking and Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider k-dominant skyline computation when the underlying dataset is partitioned into geographically distant computing core that are connected to the coordinator (server). The existing k-dominant skyline solutions are not suitable for our problem, because they are restricted to centralized query processors, limiting scalability and imposing a single point of failure. Moreover, k-dominant skyline computation does not follow transitivity property like skyline computation. In this paper, we developed a multicore based spatial k-dominant skyline (MSKS) computation algorithm. MSKS is a feedback-driven mechanism, where the coordinator iteratively transmits data to each computing core. Computing core is able to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Furthermore, it supports a user-friendly progress indicator that allows user to modify (insert, delete, and update) and monitor the progress of long running k-dominant skyline queries. Extensive performance study shows that proposed algorithm is efficient and robust to different data distributions and achieves its progressive goal with a minimal overhead.
基于多核的空间主导型天际线计算
当底层数据集被划分为连接到协调器(服务器)的地理上遥远的计算核心时,我们考虑k主导的天际线计算。现有的以k为主导的skyline解决方案不适合我们的问题,因为它们仅限于集中的查询处理器,限制了可伸缩性并造成单点故障。此外,k-显性天际线计算不像天际线计算那样遵循传递性。本文开发了一种基于多核的空间k-主导型天际线(msk)计算算法。msk是一种反馈驱动机制,其中协调器迭代地将数据传输到每个计算核心。计算核心能够修剪大量的本地数据,否则这些数据将需要发送给协调器。此外,它还支持用户友好的进度指示器,允许用户修改(插入、删除和更新)和监视长时间运行的k-dominant skyline查询的进度。大量的性能研究表明,该算法对不同的数据分布具有良好的鲁棒性和有效性,并以最小的开销实现了渐进目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信