Person identification from actions based on Artificial Neural Networks

Alexandros Iosifidis, A. Tefas, I. Pitas
{"title":"Person identification from actions based on Artificial Neural Networks","authors":"Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/CIBIM.2013.6607907","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a person identification method exploiting human motion information. A Self Organizing Neural Network is employed in order to determine a topographic map of representative human body poses. Fuzzy Vector Quantization is applied to the human body poses appearing in a video in order to obtain a compact video representation, that will be used for person identification and action recognition. Two feedforward Artificial Neural Networks are trained to recognize the person ID and action class labels of a given test action video. Network outputs combination, based on another feedforward network, is performed in the case of multiple cameras used in the training and identification phases. Experimental results on two publicly available databases evaluate the performance of the proposed person identification approach.","PeriodicalId":286155,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2013.6607907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose a person identification method exploiting human motion information. A Self Organizing Neural Network is employed in order to determine a topographic map of representative human body poses. Fuzzy Vector Quantization is applied to the human body poses appearing in a video in order to obtain a compact video representation, that will be used for person identification and action recognition. Two feedforward Artificial Neural Networks are trained to recognize the person ID and action class labels of a given test action video. Network outputs combination, based on another feedforward network, is performed in the case of multiple cameras used in the training and identification phases. Experimental results on two publicly available databases evaluate the performance of the proposed person identification approach.
基于人工神经网络的人的动作识别
本文提出了一种利用人体运动信息进行身份识别的方法。采用自组织神经网络确定具有代表性的人体姿态地形图。将模糊矢量量化应用于视频中出现的人体姿态,得到紧凑的视频表示形式,用于人物识别和动作识别。训练两个前馈人工神经网络来识别给定测试动作视频的人物ID和动作类别标签。在训练和识别阶段使用多个摄像机的情况下,基于另一个前馈网络进行网络输出组合。在两个公开可用的数据库上的实验结果评估了所提出的人物识别方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信