Target-based Sentiment Analysis in Finance with Domain Knowledge

Caihua Yang, Jianzhu Bao, Xiaoqi Yu, Ruifeng Xu
{"title":"Target-based Sentiment Analysis in Finance with Domain Knowledge","authors":"Caihua Yang, Jianzhu Bao, Xiaoqi Yu, Ruifeng Xu","doi":"10.1109/CCIS53392.2021.9754611","DOIUrl":null,"url":null,"abstract":"In order to apply the target-based sentiment analysis to finance domain, this paper constructs a corpus with eight types of entities and four types of emotions. Compared to previous works, the corpus proposed in this paper is more fine-grained. Furthermore, we propose a complete and universal framework for target-based sentiment analysis, which contains two subtasks, i.e. named entity recognition and entity-level sentiment classification. We incorporate the pre-trained language model with financial domain knowledge and achieve significant performance improvement.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to apply the target-based sentiment analysis to finance domain, this paper constructs a corpus with eight types of entities and four types of emotions. Compared to previous works, the corpus proposed in this paper is more fine-grained. Furthermore, we propose a complete and universal framework for target-based sentiment analysis, which contains two subtasks, i.e. named entity recognition and entity-level sentiment classification. We incorporate the pre-trained language model with financial domain knowledge and achieve significant performance improvement.
基于领域知识的金融目标情感分析
为了将基于目标的情感分析应用于金融领域,本文构建了一个包含8种实体和4种情感的语料库。与以往的工作相比,本文提出的语料库具有更细粒度的特点。在此基础上,我们提出了一个完整的、通用的基于目标的情感分析框架,该框架包含命名实体识别和实体级情感分类两个子任务。我们将预先训练好的语言模型与金融领域的知识结合起来,取得了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信