Disease detection in medical prescriptions using data mining tools

M. S. Alamdari, M. Teimouri, F. Farzadfar, Amir Hashemi-Meshkini
{"title":"Disease detection in medical prescriptions using data mining tools","authors":"M. S. Alamdari, M. Teimouri, F. Farzadfar, Amir Hashemi-Meshkini","doi":"10.1109/ICCKE.2014.6993357","DOIUrl":null,"url":null,"abstract":"Prevalence of communicable and non-communicable diseases is one of the most important categories of epidemiological data that is used for interpreting health status of communities. This study is aimed to calculate the prevalence of outpatient diseases through characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions of various diseases and we have focused on the identification of ten diseases. In this study data mining tools is used to identify diseases related to each prescription. Then we have compared the performance of these methods with a Naïve method. The results indicate that implementation of data mining algorithms has a good performance in characterization of outpatient diseases. These results can help to choose the appropriate method for classification of prescriptions in larger scales.","PeriodicalId":152540,"journal":{"name":"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2014.6993357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Prevalence of communicable and non-communicable diseases is one of the most important categories of epidemiological data that is used for interpreting health status of communities. This study is aimed to calculate the prevalence of outpatient diseases through characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions of various diseases and we have focused on the identification of ten diseases. In this study data mining tools is used to identify diseases related to each prescription. Then we have compared the performance of these methods with a Naïve method. The results indicate that implementation of data mining algorithms has a good performance in characterization of outpatient diseases. These results can help to choose the appropriate method for classification of prescriptions in larger scales.
基于数据挖掘工具的医学处方疾病检测
传染病和非传染性疾病的流行率是用来解释社区健康状况的最重要的流行病学数据类别之一。本研究旨在通过门诊处方的特征来计算门诊疾病的患病率。本研究使用的数据来自1412种不同疾病的处方,我们重点鉴定了10种疾病。在本研究中,数据挖掘工具用于识别与每种处方相关的疾病。然后我们将这些方法的性能与Naïve方法进行了比较。结果表明,数据挖掘算法的实现在门诊疾病表征方面具有良好的性能。这些结果可以为更大规模的处方分类选择合适的方法提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信