Nonlinear control of a quadrotor micro-UAV using feedback-linearization

H. Voos
{"title":"Nonlinear control of a quadrotor micro-UAV using feedback-linearization","authors":"H. Voos","doi":"10.1109/ICMECH.2009.4957154","DOIUrl":null,"url":null,"abstract":"Four-rotor micro aerial robots, so called quadrotor UAVs, are one of the most preferred type of unmanned aerial vehicles for near-area surveillance and exploration both in military and commercial in- and outdoor applications. The reason is the very easy construction and steering principle using four rotors in a cross configuration. However, stabilizing control and guidance of these vehicles is a difficult task because of the nonlinear dynamic behavior. In addition, the small payload and the reduced processing power of the onboard electronics are further limitations for any control system implementation. This paper describes the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller. Some first simulation results underline the performance of this new control approach for the current realization.","PeriodicalId":414967,"journal":{"name":"2009 IEEE International Conference on Mechatronics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"319","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2009.4957154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 319

Abstract

Four-rotor micro aerial robots, so called quadrotor UAVs, are one of the most preferred type of unmanned aerial vehicles for near-area surveillance and exploration both in military and commercial in- and outdoor applications. The reason is the very easy construction and steering principle using four rotors in a cross configuration. However, stabilizing control and guidance of these vehicles is a difficult task because of the nonlinear dynamic behavior. In addition, the small payload and the reduced processing power of the onboard electronics are further limitations for any control system implementation. This paper describes the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller. Some first simulation results underline the performance of this new control approach for the current realization.
基于反馈线性化的四旋翼微型无人机非线性控制
四旋翼微型航空机器人,即所谓的四旋翼无人机,是在军事和商业内外应用中最受欢迎的近区域监视和探测无人机类型之一。原因是非常容易的结构和转向原则,使用四个转子在交叉配置。然而,由于该类车辆的非线性动力学特性,使其稳定控制和制导成为一项艰巨的任务。此外,机载电子设备的小载荷和降低的处理能力进一步限制了任何控制系统的实施。本文介绍了一种基于分解成嵌套结构和反馈线性化的非线性车辆控制系统的开发,该系统可以在嵌入式微控制器上实现。一些初步的仿真结果强调了这种新的控制方法对当前实现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信