Application of Data Mining Classification Method for Student Graduation Prediction Using K-Nearest Neighbor (K-NN) Algorithm

Mohammad Imron, Satia Angga Kusumah
{"title":"Application of Data Mining Classification Method for Student Graduation Prediction Using K-Nearest Neighbor (K-NN) Algorithm","authors":"Mohammad Imron, Satia Angga Kusumah","doi":"10.47738/ijiis.v1i1.17","DOIUrl":null,"url":null,"abstract":"The student graduation rate is one of the indicators to improve the accreditation of a course. It is needed to monitor and evaluate student graduation tendencies, timely or not. One of them is to predict the graduation rate by utilizing the data mining technique. Data Mining Classification method used is the algorithm K-Nearest Neighbor (K-NN). The data used comes from student data, student value data, and student graduation data for the year 2010-2012 with a total of 2,189 records. The attributes used are gender, school of origin, IP study program Semester 1-6. The results showed that the K-NN method produced a high accuracy of 89.04%.","PeriodicalId":229613,"journal":{"name":"IJIIS: International Journal of Informatics and Information Systems","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJIIS: International Journal of Informatics and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47738/ijiis.v1i1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The student graduation rate is one of the indicators to improve the accreditation of a course. It is needed to monitor and evaluate student graduation tendencies, timely or not. One of them is to predict the graduation rate by utilizing the data mining technique. Data Mining Classification method used is the algorithm K-Nearest Neighbor (K-NN). The data used comes from student data, student value data, and student graduation data for the year 2010-2012 with a total of 2,189 records. The attributes used are gender, school of origin, IP study program Semester 1-6. The results showed that the K-NN method produced a high accuracy of 89.04%.
数据挖掘分类方法在k -最近邻(K-NN)算法学生毕业预测中的应用
学生毕业率是提高课程认证的指标之一。无论是否及时,都需要对学生的毕业趋势进行监测和评估。其中之一是利用数据挖掘技术预测毕业率。使用的分类方法是k -最近邻(K-NN)算法。所使用的数据来自2010-2012年的学生数据、学生价值数据和学生毕业数据,共有2189条记录。使用的属性是性别、原学校、IP学习项目。结果表明,K-NN方法的准确率高达89.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信