Improved Genetic Algorithm to Solve Asymmetric Traveling Salesman Problem

O. Abdoun, C. Tajani, J. Abouchabaka
{"title":"Improved Genetic Algorithm to Solve Asymmetric Traveling Salesman Problem","authors":"O. Abdoun, C. Tajani, J. Abouchabaka","doi":"10.12816/0041838","DOIUrl":null,"url":null,"abstract":"The asymmetric traveling salesman problem (ATSP) is a combinatorial problem of great importance where the cost matrix is not symmetric, which complicates its resolution. The genetic algorithms (GAs) are a meta-heuristics methods used to solve transportation problems that have proved their effectiveness to obtain good results. However, improvements can be made by adapting the crossover operator as a primordial operator in GAs. In this work, we propose an adapted XIM crossover operator for the ATSP in order to improve the optimal solution obtained by GAs. Numerical simulations are performed and discussed for different series of standard instances showing the improvement of the optimal solution by the proposed genetic operator.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"33 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0041838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The asymmetric traveling salesman problem (ATSP) is a combinatorial problem of great importance where the cost matrix is not symmetric, which complicates its resolution. The genetic algorithms (GAs) are a meta-heuristics methods used to solve transportation problems that have proved their effectiveness to obtain good results. However, improvements can be made by adapting the crossover operator as a primordial operator in GAs. In this work, we propose an adapted XIM crossover operator for the ATSP in order to improve the optimal solution obtained by GAs. Numerical simulations are performed and discussed for different series of standard instances showing the improvement of the optimal solution by the proposed genetic operator.
求解不对称旅行商问题的改进遗传算法
非对称旅行商问题(ATSP)是一个非常重要的组合问题,其中成本矩阵是不对称的,这使其求解变得复杂。遗传算法是一种用于求解交通问题的元启发式方法,已被证明具有较好的有效性。然而,可以通过将交叉算子作为GAs中的原始算子来改进。在这项工作中,我们提出了一种适用于ATSP的XIM交叉算子,以改进GAs获得的最优解。对不同系列的标准实例进行了数值模拟并进行了讨论,结果表明所提出的遗传算子改善了最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信