Secured and green data processing and transmission in a human-vehicle interaction ADAS system

Hongyu Guan, D. Jutras, Zhuosha Guo
{"title":"Secured and green data processing and transmission in a human-vehicle interaction ADAS system","authors":"Hongyu Guan, D. Jutras, Zhuosha Guo","doi":"10.23919/GLC.2018.8319098","DOIUrl":null,"url":null,"abstract":"Using light waves instead of radio waves, the Visible Light Communication (VLC) can provide a short range data transmission. Their properties are suitable for the ADAS (Advanced Driving Assistance System) applications on smartphones. In this paradigm, a smartphone need to connect with the sensitive information of a vehicle. The quality of this data exchange is an important issue. To do this, we design and implement a VLC system that uses two components: a modified reading light and an USB optical transceiver. In our paradigm, these two components are fixed inside a vehicle. This constrained mobility is suitable for our VLC system. Comparing RF communication, our VLC system provides a stable short range communication with limited transmission power and LOS property. This is an ideal candidate to achieve a stable, secure and private data transmission for ADAS applications. In this work, a VLC for prototype based on commercial LED is presented and tested. This experimental study has proved that our VLC prototype is realistic for providing a good enough quality of the data link and can run on resource-constrained platforms.","PeriodicalId":150652,"journal":{"name":"2018 Global LIFI Congress (GLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global LIFI Congress (GLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/GLC.2018.8319098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using light waves instead of radio waves, the Visible Light Communication (VLC) can provide a short range data transmission. Their properties are suitable for the ADAS (Advanced Driving Assistance System) applications on smartphones. In this paradigm, a smartphone need to connect with the sensitive information of a vehicle. The quality of this data exchange is an important issue. To do this, we design and implement a VLC system that uses two components: a modified reading light and an USB optical transceiver. In our paradigm, these two components are fixed inside a vehicle. This constrained mobility is suitable for our VLC system. Comparing RF communication, our VLC system provides a stable short range communication with limited transmission power and LOS property. This is an ideal candidate to achieve a stable, secure and private data transmission for ADAS applications. In this work, a VLC for prototype based on commercial LED is presented and tested. This experimental study has proved that our VLC prototype is realistic for providing a good enough quality of the data link and can run on resource-constrained platforms.
人车交互ADAS系统中安全、绿色的数据处理与传输
使用光波代替无线电波,可见光通信(VLC)可以提供短距离的数据传输。它们的性能适用于智能手机上的ADAS(高级驾驶辅助系统)应用程序。在这种模式下,智能手机需要与车辆的敏感信息连接。这种数据交换的质量是一个重要问题。为此,我们设计并实现了一个VLC系统,该系统使用两个组件:一个改进的阅读灯和一个USB光收发器。在我们的范例中,这两个组件固定在车辆内部。这种受限的移动性适合于我们的VLC系统。与射频通信相比,我们的VLC系统在有限的传输功率和LOS特性下提供了稳定的近距离通信。这是实现ADAS应用稳定、安全和私密数据传输的理想选择。本文介绍了一种基于商用LED的VLC样机,并进行了测试。该实验研究证明了我们的VLC原型能够提供足够好的数据链质量,并且可以在资源受限的平台上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信