Cotangent bundles and micro-supports in mixed characteristic case

Takeshi Saito
{"title":"Cotangent bundles and micro-supports in mixed characteristic case","authors":"Takeshi Saito","doi":"10.2140/ant.2022.16.335","DOIUrl":null,"url":null,"abstract":"For a regular scheme and its reduced closed subscheme, the latter being of finite type over a perfect field of positive characteristic, we define its cotangent bundle restricted to the closed subscheme as a family of vector bundles on smooth schemes over the field endowed with morphisms to the closed subscheme factoring through the Frobenius. For a constructible complex on the etale site of the scheme, we introduce the condition to be micro-supported on a closed conical subset in the cotangent bundle. We compute the singular supports of certain Kummer sheaves of rank 1.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ant.2022.16.335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For a regular scheme and its reduced closed subscheme, the latter being of finite type over a perfect field of positive characteristic, we define its cotangent bundle restricted to the closed subscheme as a family of vector bundles on smooth schemes over the field endowed with morphisms to the closed subscheme factoring through the Frobenius. For a constructible complex on the etale site of the scheme, we introduce the condition to be micro-supported on a closed conical subset in the cotangent bundle. We compute the singular supports of certain Kummer sheaves of rank 1.
混合特征情况下的共切线束和微支撑
对于正则格式及其简化闭子格式,后者是正特征的完美域上的有限型,我们将其限制于闭子格式的余切束定义为域上的光滑格式上的向量束族,该光滑格式通过Frobenius因子分解具有闭子格式的态射。对于方案的起始点上的一个可构造复合体,我们引入了在共切束上的一个闭锥子集上微支撑的条件。我们计算了秩为1的若干Kummer轴的奇异支撑力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信