Research on Financial Early Warning of Big Data Enterprises Based on Logistic Regression and BP Neural Network

Hongmei Zhang, Jian He
{"title":"Research on Financial Early Warning of Big Data Enterprises Based on Logistic Regression and BP Neural Network","authors":"Hongmei Zhang, Jian He","doi":"10.2991/dramclr-19.2019.16","DOIUrl":null,"url":null,"abstract":"—Based on the difference between big data enterprises and traditional enterprises, this paper first constructs two single financial risk early warning models: logistic regression model and BP neural network model, then introduces default probability of logistic regression model output into BP neural network model, and establishes a nonlinear combination based on BP neural network model. A new forecasting method is proposed, and an early warning model of financial crisis for large data enterprises is constructed and an empirical study is carried out. The results show that, compared with single model, the combined forecasting model has no significant improvement in the forecasting accuracy of financial early warning for large data enterprises, but the combined forecasting model is more stable. This provides a new idea for the financial risk early warning research of large data enterprises in China. Key words— combination forecasting model, large data enterprises,financial early warning 摘要—基于大数据企业与传统企业的差异,本文首先构建 了 logistic 回归模型和 BP 神经网络模型两个单一的财务风险 预警模型,然后将 logistic 回归模型输出的违约概率引入到 BP 神经网络模型中,建立了基于 BP 神经网络模型非线性组合 的预测新方法,构建了大数据企业财务危机预警模型并进行了 实证研究。结果表明,复合预测模型在对大数据企业财务预警 的预测精度上,与单一模型相比,预测精度没有显著提高,但 复合预测模型更具有稳定性。这为我国大数据企业财务风险预 警研究提供了新思路。 关键词—复合预测模型;大数据企业;财务预警","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/dramclr-19.2019.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—Based on the difference between big data enterprises and traditional enterprises, this paper first constructs two single financial risk early warning models: logistic regression model and BP neural network model, then introduces default probability of logistic regression model output into BP neural network model, and establishes a nonlinear combination based on BP neural network model. A new forecasting method is proposed, and an early warning model of financial crisis for large data enterprises is constructed and an empirical study is carried out. The results show that, compared with single model, the combined forecasting model has no significant improvement in the forecasting accuracy of financial early warning for large data enterprises, but the combined forecasting model is more stable. This provides a new idea for the financial risk early warning research of large data enterprises in China. Key words— combination forecasting model, large data enterprises,financial early warning 摘要—基于大数据企业与传统企业的差异,本文首先构建 了 logistic 回归模型和 BP 神经网络模型两个单一的财务风险 预警模型,然后将 logistic 回归模型输出的违约概率引入到 BP 神经网络模型中,建立了基于 BP 神经网络模型非线性组合 的预测新方法,构建了大数据企业财务危机预警模型并进行了 实证研究。结果表明,复合预测模型在对大数据企业财务预警 的预测精度上,与单一模型相比,预测精度没有显著提高,但 复合预测模型更具有稳定性。这为我国大数据企业财务风险预 警研究提供了新思路。 关键词—复合预测模型;大数据企业;财务预警
基于Logistic回归和BP神经网络的大数据企业财务预警研究
基于大数据企业与传统企业的差异,本文首先构建了两种单一的财务风险预警模型:logistic回归模型和BP神经网络模型,然后将logistic回归模型输出的违约概率引入BP神经网络模型,并建立了基于BP神经网络模型的非线性组合。提出了一种新的预测方法,构建了大数据企业财务危机预警模型,并进行了实证研究。结果表明,与单一模型相比,组合预测模型对大数据企业财务预警的预测精度没有显著提高,但组合预测模型更加稳定。这为国内大数据企业财务风险预警研究提供了新的思路。关键字的组合预测模型,大量数据的企业,财务预警摘要——基于大数据企业与传统企业的差异,本文首先构建了物流回归模型和BP神经网络模型两个单一的财务风险预警模型,然后将物流回归模型输出的违约概率引入到BP神经网络模型中,建立了基于BP神经网络模型非线性组合的预测新方法,构建了大数据企业财务危机预警模型并进行了实证研究。结果表明,复合预测模型在对大数据企业财务预警 的预测精度上,与单一模型相比,预测精度没有显著提高,但 复合预测模型更具有稳定性。这为我国大数据企业财务风险预 警研究提供了新思路。 关键词—复合预测模型;大数据企业;财务预警
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信