Research on SLAM Algorithm and Navigation of Mobile Robot Based on ROS

B. Liu, Zhiwei Guan, Bin Li, Guoqiang Wen, Yu Zhao
{"title":"Research on SLAM Algorithm and Navigation of Mobile Robot Based on ROS","authors":"B. Liu, Zhiwei Guan, Bin Li, Guoqiang Wen, Yu Zhao","doi":"10.1109/ICMA52036.2021.9512584","DOIUrl":null,"url":null,"abstract":"As an important research direction of mobile robots, SLAM is the core technology to realize intelligent autonomous mobile robots. For positioning, the robot needs a consistent map, for obtaining a map, the robot makes a good estimate of its position. This interdependence between positioning and mapping makes the SLAM problem difficult and necessary. This article first summarizes the representation method of the environment map, uses the ROS mobile robot to map the indoor environment, compares the mapping effect of the Gmapping algorithm and the Cartographer algorithm, analyzes the results of the mapping, and proposes the optimal mapping plan. Aiming at the problem of simultaneous localization and mapping of robots, a ROS-based solution is proposed. Compare Dijkstra, A * algorithm and Dynamic Window Approach, and choose the best navigation algorithm.","PeriodicalId":339025,"journal":{"name":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA52036.2021.9512584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an important research direction of mobile robots, SLAM is the core technology to realize intelligent autonomous mobile robots. For positioning, the robot needs a consistent map, for obtaining a map, the robot makes a good estimate of its position. This interdependence between positioning and mapping makes the SLAM problem difficult and necessary. This article first summarizes the representation method of the environment map, uses the ROS mobile robot to map the indoor environment, compares the mapping effect of the Gmapping algorithm and the Cartographer algorithm, analyzes the results of the mapping, and proposes the optimal mapping plan. Aiming at the problem of simultaneous localization and mapping of robots, a ROS-based solution is proposed. Compare Dijkstra, A * algorithm and Dynamic Window Approach, and choose the best navigation algorithm.
基于ROS的移动机器人SLAM算法与导航研究
SLAM是实现智能自主移动机器人的核心技术,是移动机器人的一个重要研究方向。对于定位,机器人需要一个一致的地图,为了获得地图,机器人对自己的位置做一个很好的估计。定位和绘图之间的这种相互依赖使得SLAM问题变得困难和必要。本文首先总结了环境地图的表示方法,利用ROS移动机器人对室内环境进行地图绘制,比较了gapping算法和Cartographer算法的测绘效果,分析了测绘结果,提出了最优的测绘方案。针对机器人同时定位和映射的问题,提出了一种基于ros的解决方案。比较Dijkstra算法、A *算法和动态窗口方法,选择最佳的导航算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信