The raise of machine learning hyperparameter constraints in Python code

Ingkarat Rak-amnouykit, Ana L. Milanova, Guillaume Baudart, Martin Hirzel, Julian Dolby
{"title":"The raise of machine learning hyperparameter constraints in Python code","authors":"Ingkarat Rak-amnouykit, Ana L. Milanova, Guillaume Baudart, Martin Hirzel, Julian Dolby","doi":"10.1145/3533767.3534400","DOIUrl":null,"url":null,"abstract":"Machine-learning operators often have correctness constraints that cut across multiple hyperparameters and/or data. Violating these constraints causes the operator to raise runtime exceptions, but those are usually documented only informally or not at all. This paper presents the first interprocedural weakest-precondition analysis for Python to extract hyperparameter constraints. The analysis is mostly static, but to make it tractable for typical Python idioms in machine-learning libraries, it selectively switches to the concrete domain for some cases. This paper demonstrates the analysis by extracting hyperparameter constraints for 181 operators from a total of 8 ML libraries, where it achieved high precision and recall and found real bugs. Our technique advances static analysis for Python and is a step towards safer and more robust machine learning.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3534400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine-learning operators often have correctness constraints that cut across multiple hyperparameters and/or data. Violating these constraints causes the operator to raise runtime exceptions, but those are usually documented only informally or not at all. This paper presents the first interprocedural weakest-precondition analysis for Python to extract hyperparameter constraints. The analysis is mostly static, but to make it tractable for typical Python idioms in machine-learning libraries, it selectively switches to the concrete domain for some cases. This paper demonstrates the analysis by extracting hyperparameter constraints for 181 operators from a total of 8 ML libraries, where it achieved high precision and recall and found real bugs. Our technique advances static analysis for Python and is a step towards safer and more robust machine learning.
Python代码中机器学习超参数约束的提升
机器学习操作符通常具有跨多个超参数和/或数据的正确性约束。违反这些约束会导致操作符引发运行时异常,但这些异常通常只是非正式地记录下来,或者根本没有记录下来。本文首次提出了Python超参数约束提取的过程间最弱前提分析方法。分析主要是静态的,但为了使其易于处理机器学习库中的典型Python习惯用法,它在某些情况下选择性地切换到具体领域。本文通过从总共8个ML库中提取181个操作符的超参数约束来演示分析,获得了较高的精度和召回率,并发现了真正的错误。我们的技术促进了Python的静态分析,是迈向更安全、更健壮的机器学习的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信