Multi-sensor fusion based on BPNN in quadruped ground classification

Zhuhui Huang, Wei Wang
{"title":"Multi-sensor fusion based on BPNN in quadruped ground classification","authors":"Zhuhui Huang, Wei Wang","doi":"10.1109/ICMA.2017.8016059","DOIUrl":null,"url":null,"abstract":"Appropriate perception of different ground substrates plays an essential role in realizing adaptive quadruped locomotion. In this paper, we propose a multi-sensor fusion method based on Back Propagation Neural Network (BPNN) using in real-time ground substrate classification for adaptive quadruped walking. In order to collect the body gyro information, foot-ground contact force, Direct Current (DC) motor information and joint angle to train the network, we present the enhanced walk strategy with Center of Gravity (COG) adjustment method with 6-axis motion sensor feedback and realize steady walk gait on different ground substrates. Using these method, the quadruped robot Biodog realizes multi-sensor information collection while walking on six different ground substrates. Then we train the BPNN using the collected data after calculation and normalization. In network training, about 99.83% samples have been classified correctly using BPNN. In real-time testing, about 98.33% has been classified successfully using trained BPNN.","PeriodicalId":124642,"journal":{"name":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2017.8016059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Appropriate perception of different ground substrates plays an essential role in realizing adaptive quadruped locomotion. In this paper, we propose a multi-sensor fusion method based on Back Propagation Neural Network (BPNN) using in real-time ground substrate classification for adaptive quadruped walking. In order to collect the body gyro information, foot-ground contact force, Direct Current (DC) motor information and joint angle to train the network, we present the enhanced walk strategy with Center of Gravity (COG) adjustment method with 6-axis motion sensor feedback and realize steady walk gait on different ground substrates. Using these method, the quadruped robot Biodog realizes multi-sensor information collection while walking on six different ground substrates. Then we train the BPNN using the collected data after calculation and normalization. In network training, about 99.83% samples have been classified correctly using BPNN. In real-time testing, about 98.33% has been classified successfully using trained BPNN.
基于bp神经网络的多传感器融合在四足动物地面分类中的应用
对不同地面基质的适当感知在实现四足自适应运动中起着至关重要的作用。本文提出了一种基于反向传播神经网络(BPNN)的多传感器融合方法,用于自适应四足步行的实时地面基底分类。为了采集人体陀螺仪信息、足地接触力、直流电机信息和关节角度等信息对网络进行训练,提出了六轴运动传感器反馈的重心调整增强步行策略,实现了不同地面条件下的稳定步行步态。利用这些方法,四足机器人Biodog在六种不同的地面上行走时实现了多传感器信息采集。然后使用收集到的经过计算和归一化处理的数据训练bp神经网络。在网络训练中,使用bp神经网络对99.83%的样本进行了正确分类。在实时测试中,使用训练好的BPNN分类成功率约为98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信