{"title":"Multi-sensor fusion based on BPNN in quadruped ground classification","authors":"Zhuhui Huang, Wei Wang","doi":"10.1109/ICMA.2017.8016059","DOIUrl":null,"url":null,"abstract":"Appropriate perception of different ground substrates plays an essential role in realizing adaptive quadruped locomotion. In this paper, we propose a multi-sensor fusion method based on Back Propagation Neural Network (BPNN) using in real-time ground substrate classification for adaptive quadruped walking. In order to collect the body gyro information, foot-ground contact force, Direct Current (DC) motor information and joint angle to train the network, we present the enhanced walk strategy with Center of Gravity (COG) adjustment method with 6-axis motion sensor feedback and realize steady walk gait on different ground substrates. Using these method, the quadruped robot Biodog realizes multi-sensor information collection while walking on six different ground substrates. Then we train the BPNN using the collected data after calculation and normalization. In network training, about 99.83% samples have been classified correctly using BPNN. In real-time testing, about 98.33% has been classified successfully using trained BPNN.","PeriodicalId":124642,"journal":{"name":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2017.8016059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Appropriate perception of different ground substrates plays an essential role in realizing adaptive quadruped locomotion. In this paper, we propose a multi-sensor fusion method based on Back Propagation Neural Network (BPNN) using in real-time ground substrate classification for adaptive quadruped walking. In order to collect the body gyro information, foot-ground contact force, Direct Current (DC) motor information and joint angle to train the network, we present the enhanced walk strategy with Center of Gravity (COG) adjustment method with 6-axis motion sensor feedback and realize steady walk gait on different ground substrates. Using these method, the quadruped robot Biodog realizes multi-sensor information collection while walking on six different ground substrates. Then we train the BPNN using the collected data after calculation and normalization. In network training, about 99.83% samples have been classified correctly using BPNN. In real-time testing, about 98.33% has been classified successfully using trained BPNN.