Real Space Sextics and their Tritangents

Avinash Kulkarni, Yue Ren, Mahsa Sayyary Namin, B. Sturmfels
{"title":"Real Space Sextics and their Tritangents","authors":"Avinash Kulkarni, Yue Ren, Mahsa Sayyary Namin, B. Sturmfels","doi":"10.1145/3208976.3208977","DOIUrl":null,"url":null,"abstract":"The intersection of a quadric and a cubic surface in 3-space is a canonical curve of genus 4. It has 120 complex tritangent planes. We present algorithms for computing real tritangents, and we study the associated discriminants. We focus on space sextics that arise from del Pezzo surfaces of degree one. Their numbers of planes that are tangent at three real points vary widely; both 0 and 120 are attained. This solves a problem suggested by Arnold Emch in 1928.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The intersection of a quadric and a cubic surface in 3-space is a canonical curve of genus 4. It has 120 complex tritangent planes. We present algorithms for computing real tritangents, and we study the associated discriminants. We focus on space sextics that arise from del Pezzo surfaces of degree one. Their numbers of planes that are tangent at three real points vary widely; both 0 and 120 are attained. This solves a problem suggested by Arnold Emch in 1928.
真实空间美学及其三角关系
三维空间中二次曲面与三次曲面的交点是一条属4的标准曲线。它有120个复三角平面。我们提出了计算实三角形的算法,并研究了相关的判别式。我们关注的是由一次del Pezzo曲面产生的空间美学。它们在三个实点相切的平面数量差别很大;得到0和120。这解决了阿诺德·埃姆奇在1928年提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信