A self-adaptive dynamic particle swarm optimizer

Jing J. Liang, L. Guo, R. Liu, B. Qu
{"title":"A self-adaptive dynamic particle swarm optimizer","authors":"Jing J. Liang, L. Guo, R. Liu, B. Qu","doi":"10.1109/CEC.2015.7257290","DOIUrl":null,"url":null,"abstract":"A self-adaptive dynamic multi-swarm particle swarm optimizer (sDMS-PSO) is proposed. In PSO, three parameters should be given experimentally or empirically. While in the sDMS-PSO a self-adaptive strategy of parameters is embedded. One or more parameters are assigned to different swarms adaptively. In a single swarm, through specified iterations, the parameters achieving the maximum number of renewal of the local best solutions are recorded. Then the information of competitive arguments is shared among all of the swarms through generating new parameters using the saved part. Multiple swarms detect the arguments in various groups in parallel during the evolutionary process which accelerates the learning speed. What's more, sharing the information of the best parameters leads to faster convergence. A local search method of the quasi-Newton is included to enhance the ability of exploitation. The sDMS-PSO is tested on the set of benchmark functions provided by CEC2015. The results of the experiment are showed in the paper.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

A self-adaptive dynamic multi-swarm particle swarm optimizer (sDMS-PSO) is proposed. In PSO, three parameters should be given experimentally or empirically. While in the sDMS-PSO a self-adaptive strategy of parameters is embedded. One or more parameters are assigned to different swarms adaptively. In a single swarm, through specified iterations, the parameters achieving the maximum number of renewal of the local best solutions are recorded. Then the information of competitive arguments is shared among all of the swarms through generating new parameters using the saved part. Multiple swarms detect the arguments in various groups in parallel during the evolutionary process which accelerates the learning speed. What's more, sharing the information of the best parameters leads to faster convergence. A local search method of the quasi-Newton is included to enhance the ability of exploitation. The sDMS-PSO is tested on the set of benchmark functions provided by CEC2015. The results of the experiment are showed in the paper.
一种自适应动态粒子群优化算法
提出了一种自适应动态多群粒子群优化器(sDMS-PSO)。在粒子群算法中,需要通过实验或经验给出三个参数。在sDMS-PSO中嵌入了参数自适应策略。将一个或多个参数自适应地分配给不同的群体。在单个群中,通过指定的迭代,记录局部最优解更新次数最大的参数。然后利用保存的部分生成新的参数,在各蜂群之间共享竞争参数信息。在进化过程中,多个群体并行地检测不同群体中的参数,加快了学习速度。此外,共享最佳参数的信息可以加快收敛速度。引入拟牛顿局部搜索方法,提高了算法的开发能力。sDMS-PSO在CEC2015提供的一组基准函数上进行了测试。最后给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信