Ling Xie, S. Wickramanayaka, Booyang Jung, J. Li, Lim Jung-kai, Daniel Ismael
{"title":"Wafer level underfill study for high density ultra-fine pitch Cu-Cu bonding for 3D IC stacking","authors":"Ling Xie, S. Wickramanayaka, Booyang Jung, J. Li, Lim Jung-kai, Daniel Ismael","doi":"10.1109/EPTC.2014.7028388","DOIUrl":null,"url":null,"abstract":"A wafer level under-fill (WLUF) process for ultra-fine Cu-Cu bonding is developed. Under-fill is applied as pre-applied under-fill then planarized the surface. The methodology used for surface planarization (bit grinding) and surface treatment (H2 plasma) are fond to be important in the surface preparation and activation. Underfill material needs to have sufficient hardness and adhesion to the wafer to survive during bit grinding process. Again, it must not get cured during plasma treatments before bonding is carried out. DOE is carried out with four different WLUF materials and one capillary under-fill material. Tests were carried out with a test vehicle having 5 um diameter and 10 um pitch. Results showed only one material could pass through all those requirements.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
A wafer level under-fill (WLUF) process for ultra-fine Cu-Cu bonding is developed. Under-fill is applied as pre-applied under-fill then planarized the surface. The methodology used for surface planarization (bit grinding) and surface treatment (H2 plasma) are fond to be important in the surface preparation and activation. Underfill material needs to have sufficient hardness and adhesion to the wafer to survive during bit grinding process. Again, it must not get cured during plasma treatments before bonding is carried out. DOE is carried out with four different WLUF materials and one capillary under-fill material. Tests were carried out with a test vehicle having 5 um diameter and 10 um pitch. Results showed only one material could pass through all those requirements.