Advanced Method for Solving the Non-linear Multiparameter Spectral Problems

P. Savenko
{"title":"Advanced Method for Solving the Non-linear Multiparameter Spectral Problems","authors":"P. Savenko","doi":"10.1109/DIPED53165.2021.9552315","DOIUrl":null,"url":null,"abstract":"An effective numerical method for solving non-linear multiparametric spectral problems for the holomorphic operator-functions, which belong to the Banach spaces is proposed. The theorem of existence of connected components of the spectrum (CCS), the finding of which consists in solving a system of equations of partial derivatives of the first order with the corresponding initial condition, is proved. The examples of solving three-parameter spectral problems are given.","PeriodicalId":150897,"journal":{"name":"2021 IEEE 26th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 26th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED53165.2021.9552315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An effective numerical method for solving non-linear multiparametric spectral problems for the holomorphic operator-functions, which belong to the Banach spaces is proposed. The theorem of existence of connected components of the spectrum (CCS), the finding of which consists in solving a system of equations of partial derivatives of the first order with the corresponding initial condition, is proved. The examples of solving three-parameter spectral problems are given.
求解非线性多参数谱问题的先进方法
提出了一种求解Banach空间全纯算子函数非线性多参数谱问题的有效数值方法。证明了频谱连通分量的存在性定理,该定理的证明是通过求解具有相应初始条件的一阶偏导数方程组得到的。给出了求解三参数谱问题的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信