{"title":"A note on multi-image denoising","authors":"Toni Buades, Y. Lou, J. Morel, Zhongwei Tang","doi":"10.1109/LNLA.2009.5278408","DOIUrl":null,"url":null,"abstract":"Taking photographs under low light conditions with a hand-held camera is problematic. A long exposure time can cause motion blur due to the camera shaking and a short exposure time gives a noisy image. We consider the new technical possibility offered by cameras that take image bursts. Each image of the burst is sharp but noisy. In this preliminary investigation, we explore a strategy to efficiently denoise multi-images or video. The proposed algorithm is a complex image processing chain involving accurate registration, video equalization, noise estimation and the use of state-of-the-art denoising methods. Yet, we show that this complex chain may become risk free thanks to a key feature: the noise model can be estimated accurately from the image burst. Preliminary tests will be presented. On the technical side, the method can already be used to estimate a non parametric camera noise model from any image burst.","PeriodicalId":231766,"journal":{"name":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LNLA.2009.5278408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98
Abstract
Taking photographs under low light conditions with a hand-held camera is problematic. A long exposure time can cause motion blur due to the camera shaking and a short exposure time gives a noisy image. We consider the new technical possibility offered by cameras that take image bursts. Each image of the burst is sharp but noisy. In this preliminary investigation, we explore a strategy to efficiently denoise multi-images or video. The proposed algorithm is a complex image processing chain involving accurate registration, video equalization, noise estimation and the use of state-of-the-art denoising methods. Yet, we show that this complex chain may become risk free thanks to a key feature: the noise model can be estimated accurately from the image burst. Preliminary tests will be presented. On the technical side, the method can already be used to estimate a non parametric camera noise model from any image burst.