Observability analysis and optimal placement of PMU using Differential Evolution algorithm

V. Venkateswaran, V. Kala
{"title":"Observability analysis and optimal placement of PMU using Differential Evolution algorithm","authors":"V. Venkateswaran, V. Kala","doi":"10.1109/ICETEEEM.2012.6494461","DOIUrl":null,"url":null,"abstract":"Power system state estimator uses the set of available measurements in order to estimate the state of the system. For the given measurements, the network observability analysis will determine if a unique estimate can be found for the system state. Network observability analysis can be performed using either numerical or topological approaches. In this paper optimal number and location of phasor measurement unit is performed using Differential Evolution algorithm. In addition single phasor measurement unit loss is also considered. To verify our proposed approach, simulations on 6-bus test system and IEEE 14-bus, 30-bus, 57-bus and 118-bus system are performed.","PeriodicalId":213443,"journal":{"name":"2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEEEM.2012.6494461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Power system state estimator uses the set of available measurements in order to estimate the state of the system. For the given measurements, the network observability analysis will determine if a unique estimate can be found for the system state. Network observability analysis can be performed using either numerical or topological approaches. In this paper optimal number and location of phasor measurement unit is performed using Differential Evolution algorithm. In addition single phasor measurement unit loss is also considered. To verify our proposed approach, simulations on 6-bus test system and IEEE 14-bus, 30-bus, 57-bus and 118-bus system are performed.
基于差分进化算法的PMU可观测性分析及优化布局
电力系统状态估计器是利用一组可用的测量值来估计系统的状态。对于给定的测量,网络可观察性分析将确定是否可以找到系统状态的唯一估计。网络可观察性分析可以使用数值方法或拓扑方法进行。本文采用差分进化算法对相量测量单元的数量和位置进行优化。此外,还考虑了单相量测量单元的损耗。为了验证我们的方法,在6总线测试系统和IEEE 14总线、30总线、57总线和118总线系统上进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信