Genetic programming for protein related text classification

M. Segond, C. Fonlupt, D. Robilliard
{"title":"Genetic programming for protein related text classification","authors":"M. Segond, C. Fonlupt, D. Robilliard","doi":"10.1145/1569901.1570049","DOIUrl":null,"url":null,"abstract":"Since the genomics revolution, bioinformatics has never been so popular. Many researchers have investigated with great success the use of evolutionary computation in bioinformatics [19] for example in the field of protein folding or determining genome sequences. In this paper, instead of using evolutionary computation as a way to provide new and innovative solutions to complex bioinformatics problems, we use genetic programming as a tool to evolve programs that are able to automatically classify research papers as dealing or not with a given protein. In a second part, we show that the attributes that are selected by the genetic programming evolved programs can be used efficiently for proteins classification.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Since the genomics revolution, bioinformatics has never been so popular. Many researchers have investigated with great success the use of evolutionary computation in bioinformatics [19] for example in the field of protein folding or determining genome sequences. In this paper, instead of using evolutionary computation as a way to provide new and innovative solutions to complex bioinformatics problems, we use genetic programming as a tool to evolve programs that are able to automatically classify research papers as dealing or not with a given protein. In a second part, we show that the attributes that are selected by the genetic programming evolved programs can be used efficiently for proteins classification.
蛋白质相关文本分类的遗传编程
自基因组学革命以来,生物信息学从未如此受欢迎。许多研究人员已经成功地研究了进化计算在生物信息学中的应用[19],例如在蛋白质折叠或确定基因组序列领域。在本文中,我们没有使用进化计算作为一种方法来为复杂的生物信息学问题提供新的和创新的解决方案,而是使用遗传编程作为一种工具来进化程序,该程序能够自动将研究论文分类为涉及或不涉及给定蛋白质。在第二部分中,我们展示了由遗传编程进化程序选择的属性可以有效地用于蛋白质分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信