{"title":"Optimising Wavefront Sensing Super-Resolution in the Control of Tomographic Adaptive Optics","authors":"Jesse Cranney, Angus Guihot, J. Doná, F. Rigaut","doi":"10.1109/anzcc53563.2021.9628305","DOIUrl":null,"url":null,"abstract":"In this work we propose to explore and optimise a novel concept in adaptive optics wavefront sensing. The notion being investigated is that of super-resolution, which is aimed at increasing spatial resolution in tomographic adaptive optics by introducing diversity in the alignment of different wavefront sensors. The optimisation of super-resolution requires efficient computation of the wavefront estimation error. A model of the wavefront sensor compatible with super-resolution is proposed in this paper, together with a suitable cost function to optimise the super-resolution geometry. We provide initial optimisation results verified by end-to-end simulations. In future work we will investigate the parallelisation of the optimisation routine, and alternative optimisation methods.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we propose to explore and optimise a novel concept in adaptive optics wavefront sensing. The notion being investigated is that of super-resolution, which is aimed at increasing spatial resolution in tomographic adaptive optics by introducing diversity in the alignment of different wavefront sensors. The optimisation of super-resolution requires efficient computation of the wavefront estimation error. A model of the wavefront sensor compatible with super-resolution is proposed in this paper, together with a suitable cost function to optimise the super-resolution geometry. We provide initial optimisation results verified by end-to-end simulations. In future work we will investigate the parallelisation of the optimisation routine, and alternative optimisation methods.