Masaki Yamazaki, Xingchao Peng, Kuniaki Saito, Ping Hu, Kate Saenko, Y. Taniguchi
{"title":"Weakly Supervised Domain Adaptation using Super-pixel labeling for Semantic Segmentation","authors":"Masaki Yamazaki, Xingchao Peng, Kuniaki Saito, Ping Hu, Kate Saenko, Y. Taniguchi","doi":"10.23919/MVA51890.2021.9511365","DOIUrl":null,"url":null,"abstract":"Deep learning for semantic segmentation requires a large amount of labeled data, but manually annotating images are very expensive and time consuming. To overcome the limitation, unsupervised domain adaptation methods adapt a segmentation model trained on a labeled source domain (synthetic data) to an unlabeled target domain (real-world scenes). However, the unsupervised methods have a poor performance than the supervised methods with target domain labels. In this paper, we propose a novel weakly supervised domain adaptation using super-pixel labeling for semantic segmentation. The proposed method reduces annotation cost by estimating a suitable labeling area calculated from the Entropy-based cost of a previously learned segmentation model. In addition, we generate the new pseudo-labels by applying fully connected Conditional Random Field model over the pseudo-labels obtained using an unsupervised domain adaptation. We show that our proposed method is a powerful approach for reducing annotation cost.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"27 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning for semantic segmentation requires a large amount of labeled data, but manually annotating images are very expensive and time consuming. To overcome the limitation, unsupervised domain adaptation methods adapt a segmentation model trained on a labeled source domain (synthetic data) to an unlabeled target domain (real-world scenes). However, the unsupervised methods have a poor performance than the supervised methods with target domain labels. In this paper, we propose a novel weakly supervised domain adaptation using super-pixel labeling for semantic segmentation. The proposed method reduces annotation cost by estimating a suitable labeling area calculated from the Entropy-based cost of a previously learned segmentation model. In addition, we generate the new pseudo-labels by applying fully connected Conditional Random Field model over the pseudo-labels obtained using an unsupervised domain adaptation. We show that our proposed method is a powerful approach for reducing annotation cost.