New equations for neutral terms: a sound and complete decision procedure, formalized

DTP '13 Pub Date : 2013-04-02 DOI:10.1145/2502409.2502411
Guillaume Allais, Pierre Boutillier, Conor McBride
{"title":"New equations for neutral terms: a sound and complete decision procedure, formalized","authors":"Guillaume Allais, Pierre Boutillier, Conor McBride","doi":"10.1145/2502409.2502411","DOIUrl":null,"url":null,"abstract":"The definitional equality of an intensional type theory is its test of type compatibility. Today's systems rely on ordinary evaluation semantics to compare expressions in types, frustrating users with type errors arising when evaluation fails to identify two `obviously' equal terms. If only the machine could decide a richer theory! We propose a way to decide theories which supplement evaluation with `ν-rules', rearranging the neutral parts of normal forms, and report a successful initial experiment.\n We study a simple λ-calculus with primitive fold, map and append operations on lists and develop in Agda a sound and complete decision procedure for an equational theory enriched with monoid, functor and fusion laws.","PeriodicalId":205623,"journal":{"name":"DTP '13","volume":"30 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DTP '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502409.2502411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The definitional equality of an intensional type theory is its test of type compatibility. Today's systems rely on ordinary evaluation semantics to compare expressions in types, frustrating users with type errors arising when evaluation fails to identify two `obviously' equal terms. If only the machine could decide a richer theory! We propose a way to decide theories which supplement evaluation with `ν-rules', rearranging the neutral parts of normal forms, and report a successful initial experiment. We study a simple λ-calculus with primitive fold, map and append operations on lists and develop in Agda a sound and complete decision procedure for an equational theory enriched with monoid, functor and fusion laws.
中性项的新方程:一个健全和完整的决策程序,形式化
内涵类型理论的定义相等性是其类型相容性的检验标准。今天的系统依赖于普通的求值语义来比较类型中的表达式,当求值不能识别两个“明显”相等的项时,就会出现类型错误,这让用户感到沮丧。要是机器能得出更丰富的理论就好了!我们提出了一种确定理论的方法,用“ν-规则”补充评价,重新排列范式的中性部分,并报告了一个成功的初步实验。我们研究了一种简单的λ-微积分,它包含了列表上的原始折叠、映射和追加运算,并在Agda中给出了一个完整的方程理论的决策过程,其中包含了丰富的单形、函子和融合定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信