A Convolutional Neural Networks Approach to Audio Classification for Rainfall Estimation

R. Avanzato, F. Beritelli, Francesco Di Franco, Valerio Francesco Puglisi
{"title":"A Convolutional Neural Networks Approach to Audio Classification for Rainfall Estimation","authors":"R. Avanzato, F. Beritelli, Francesco Di Franco, Valerio Francesco Puglisi","doi":"10.1109/IDAACS.2019.8924399","DOIUrl":null,"url":null,"abstract":"The recent climatic changes imply an increasing manifestation of calamitous phenomena related to important hydrogeological disruptions in many parts of the earth. For this reason, an accurate estimate of rainfall levels becomes essential to be able to warn of the imminent occurrence of a calamitous event and reduce the risk to human beings. This paper proposes an approach based on Convolutional Neural Networks (CNN) to the classification of the audio signal coming from a new rainfall system.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"134 1-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The recent climatic changes imply an increasing manifestation of calamitous phenomena related to important hydrogeological disruptions in many parts of the earth. For this reason, an accurate estimate of rainfall levels becomes essential to be able to warn of the imminent occurrence of a calamitous event and reduce the risk to human beings. This paper proposes an approach based on Convolutional Neural Networks (CNN) to the classification of the audio signal coming from a new rainfall system.
基于卷积神经网络的降雨音频分类方法
最近的气候变化意味着与地球许多地区重要的水文地质破坏有关的灾难性现象日益明显。因此,准确估计降雨量对于能够对即将发生的灾难事件发出警告并减少对人类的风险至关重要。本文提出了一种基于卷积神经网络(CNN)的新降雨系统音频信号分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信