Meta-ERM: Metaheuristic Optimization Platform for Energy Resource Management in the Smart Grid

José Almeida, Rafael Barbarroxa, F. Lezama, J. Soares, L. Gomes, F. Oliveira, Z. Vale
{"title":"Meta-ERM: Metaheuristic Optimization Platform for Energy Resource Management in the Smart Grid","authors":"José Almeida, Rafael Barbarroxa, F. Lezama, J. Soares, L. Gomes, F. Oliveira, Z. Vale","doi":"10.1109/CAI54212.2023.00034","DOIUrl":null,"url":null,"abstract":"The energy resource management problem is regarded with great importance in the energy domain due to the current transformation of the electrical grid as a result of the growth of smart grid technologies. In this situation, conventional formulations created for an entirely different scenario occasionally fail to address the issue effectively. Modern metaheuristic optimizers are a powerful tool for handling such issues when old techniques fail. This work proposes a user-friendly web Meta-ERM platform for metaheuristic optimization when solving a given case study’s energy resource management problem and allows the visualization of performance analysis.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The energy resource management problem is regarded with great importance in the energy domain due to the current transformation of the electrical grid as a result of the growth of smart grid technologies. In this situation, conventional formulations created for an entirely different scenario occasionally fail to address the issue effectively. Modern metaheuristic optimizers are a powerful tool for handling such issues when old techniques fail. This work proposes a user-friendly web Meta-ERM platform for metaheuristic optimization when solving a given case study’s energy resource management problem and allows the visualization of performance analysis.
智能电网能源管理的元启发式优化平台
随着智能电网技术的发展,当前电网正在发生转型,能源资源管理问题在能源领域受到了高度重视。在这种情况下,为完全不同的场景创建的传统公式有时不能有效地解决问题。当旧技术失败时,现代元启发式优化器是处理此类问题的强大工具。这项工作提出了一个用户友好的web Meta-ERM平台,用于在解决给定案例研究的能源管理问题时进行元启发式优化,并允许性能分析的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信