{"title":"Functions averages over the roots of unity, cauchy problems and addition formulas","authors":"L. Bragg","doi":"10.1080/02781070412331298570","DOIUrl":null,"url":null,"abstract":"An averaging operator over the roots of unity is defined on a class of analytic functions and its algebraic and analytic properties are investigated. A Cauchy like integral formula for this is obtained. This operator and its properties are then employed to solve higher order Cauchy problems, to derive addition formulas for hypergeometric functions and to obtain integral representations for special classes of hypergeometric functions.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070412331298570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An averaging operator over the roots of unity is defined on a class of analytic functions and its algebraic and analytic properties are investigated. A Cauchy like integral formula for this is obtained. This operator and its properties are then employed to solve higher order Cauchy problems, to derive addition formulas for hypergeometric functions and to obtain integral representations for special classes of hypergeometric functions.