Multiple BDD based matrix multiplication

T. Bhuvaneswari, V. Prasad, A. Singh
{"title":"Multiple BDD based matrix multiplication","authors":"T. Bhuvaneswari, V. Prasad, A. Singh","doi":"10.1109/SMELEC.2010.5549400","DOIUrl":null,"url":null,"abstract":"Binary Decision Diagrams (BDDs) are the most frequently used data structure for handling Boolean functions because of their excellent efficiency in terms of time and space. Algebraic Decision Diagrams (ADDs) have been used to solve general purpose problems such as Matrix Multiplication, logic synthesis and Formal Verification. We propose a Multiple BDD based Matrix Multiplication and compare the performance with ADD and WBDD based matrix multiplication. The results of the proposed method are promising and can be applied to other matrix related problems.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Binary Decision Diagrams (BDDs) are the most frequently used data structure for handling Boolean functions because of their excellent efficiency in terms of time and space. Algebraic Decision Diagrams (ADDs) have been used to solve general purpose problems such as Matrix Multiplication, logic synthesis and Formal Verification. We propose a Multiple BDD based Matrix Multiplication and compare the performance with ADD and WBDD based matrix multiplication. The results of the proposed method are promising and can be applied to other matrix related problems.
基于BDD的多重矩阵乘法
二进制决策图(Binary Decision Diagrams, bdd)是处理布尔函数最常用的数据结构,因为它们在时间和空间方面具有出色的效率。代数决策图(代数决策图)已经被用来解决一般的问题,如矩阵乘法、逻辑综合和形式验证。我们提出了一种基于多重BDD的矩阵乘法,并与基于ADD和基于WBDD的矩阵乘法的性能进行了比较。该方法的结果是有希望的,可以应用于其他矩阵相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信