Data Management, In-Situ Workflows and Extreme Scales

M. Parashar
{"title":"Data Management, In-Situ Workflows and Extreme Scales","authors":"M. Parashar","doi":"10.1145/3217189.3217190","DOIUrl":null,"url":null,"abstract":"Data-related challenges are dominating computational and data-enabled sciences and are limiting the potential impact of scientific application workflows enabled by extreme scale computing environments. While data staging and in-situ/in-transit data processing have emerged as attractive approaches for supporting these extreme scale workflows, the increasing heterogeneity of the storage hierarchy, coupled with increasing data volumes and complex and dynamic data access/exchange patterns, are impacting the effectiveness of these techniques. In this talk I will discuss these challenges and explore how autonomic runtime techniques are being explored to address them. I will then present autonomic policies as well as cross layer mechanisms that are part of DataSpaces, an extreme scale data staging service. This research is part of the DataSpaces project at the Rutgers Discovery Informatics Institute.","PeriodicalId":183802,"journal":{"name":"Proceedings of the 8th International Workshop on Runtime and Operating Systems for Supercomputers","volume":"92 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Runtime and Operating Systems for Supercomputers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3217189.3217190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-related challenges are dominating computational and data-enabled sciences and are limiting the potential impact of scientific application workflows enabled by extreme scale computing environments. While data staging and in-situ/in-transit data processing have emerged as attractive approaches for supporting these extreme scale workflows, the increasing heterogeneity of the storage hierarchy, coupled with increasing data volumes and complex and dynamic data access/exchange patterns, are impacting the effectiveness of these techniques. In this talk I will discuss these challenges and explore how autonomic runtime techniques are being explored to address them. I will then present autonomic policies as well as cross layer mechanisms that are part of DataSpaces, an extreme scale data staging service. This research is part of the DataSpaces project at the Rutgers Discovery Informatics Institute.
数据管理,现场工作流程和极端规模
与数据相关的挑战正在主导计算科学和数据支持科学,并限制了极端规模计算环境支持的科学应用工作流程的潜在影响。虽然数据分段和原位/传输数据处理已经成为支持这些极端规模工作流的有吸引力的方法,但存储层次结构的日益异构,加上不断增加的数据量和复杂的动态数据访问/交换模式,正在影响这些技术的有效性。在这次演讲中,我将讨论这些挑战,并探讨如何探索自主运行时技术来解决这些挑战。然后,我将介绍作为DataSpaces的一部分的自治策略和跨层机制,DataSpaces是一种极端规模的数据登台服务。这项研究是罗格斯发现信息学研究所数据空间项目的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信