Visual Sparse Bayesian Reinforcement Learning: A Framework for Interpreting What an Agent Has Learned

Indrajeet Mishra, Giang Dao, Minwoo Lee
{"title":"Visual Sparse Bayesian Reinforcement Learning: A Framework for Interpreting What an Agent Has Learned","authors":"Indrajeet Mishra, Giang Dao, Minwoo Lee","doi":"10.1109/SSCI.2018.8628887","DOIUrl":null,"url":null,"abstract":"This paper presents a Visual Sparse Bayesian Reinforcement Learning (V-SBRL) framework for recording the images of the most important memories from the past experience. The key idea of this paper is to maintain an image snapshot storage to help understanding and analyzing the learned policy. In the extended framework of SBRL [1], the agent perceives the environment as the image state inputs, encodes the image into feature vectors, train SBRL module and stores the raw images. In this process, the snapshot storage keeps only the relevant memories which are important to make future decisions and discards the not-so-important memories. The stored snapshot images enable us to understand the agent’s learning process by visualizing them. They also provide explanation of exploited policy in different conditions. A navigation task with static obstacles is examined for snapshot analysis.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"525 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a Visual Sparse Bayesian Reinforcement Learning (V-SBRL) framework for recording the images of the most important memories from the past experience. The key idea of this paper is to maintain an image snapshot storage to help understanding and analyzing the learned policy. In the extended framework of SBRL [1], the agent perceives the environment as the image state inputs, encodes the image into feature vectors, train SBRL module and stores the raw images. In this process, the snapshot storage keeps only the relevant memories which are important to make future decisions and discards the not-so-important memories. The stored snapshot images enable us to understand the agent’s learning process by visualizing them. They also provide explanation of exploited policy in different conditions. A navigation task with static obstacles is examined for snapshot analysis.
视觉稀疏贝叶斯强化学习:一个解释智能体学习的框架
本文提出了一个视觉稀疏贝叶斯强化学习(V-SBRL)框架,用于记录过去经验中最重要的记忆图像。本文的核心思想是维护一个图像快照存储,以帮助理解和分析学习策略。在SBRL的扩展框架中[1],agent将环境感知为图像状态输入,将图像编码为特征向量,训练SBRL模块并存储原始图像。在这个过程中,快照存储只保留对未来决策重要的相关记忆,而丢弃不太重要的记忆。存储的快照图像使我们能够通过可视化来理解代理的学习过程。并对不同条件下的剥削政策进行了解释。对带有静态障碍物的导航任务进行快照分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信