Queue Analysis for Probabilistic Cloud Workflows

Abdullah Alenizi, R. Ammar, Raafat S. Elfouly, Mohammad Alsulami
{"title":"Queue Analysis for Probabilistic Cloud Workflows","authors":"Abdullah Alenizi, R. Ammar, Raafat S. Elfouly, Mohammad Alsulami","doi":"10.1109/ISSPIT51521.2020.9408967","DOIUrl":null,"url":null,"abstract":"Cloud applications can be modeled as workflows. These workflows are represented by Directed Acyclic Graphs (DAGs) or non-DAGs. The graph shows the relationship between tasks that compose a workflow and the dependencies between these tasks. in our previous work, we presented a method for transforming a workflow into an equivalent graph that shows all possible paths that a workflow will take. In this paper, we use the results of that method for multiple workflows coming to a queue and use the famous pollaczek–khintchine formula to estimate the average waiting and completion time for submitted workflows. Then, we use different scheduling algorithms, namely, Shortest Job First (SJF) and Longest Job First (LJF) and compare them with First Come First Serve (FCFS).","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud applications can be modeled as workflows. These workflows are represented by Directed Acyclic Graphs (DAGs) or non-DAGs. The graph shows the relationship between tasks that compose a workflow and the dependencies between these tasks. in our previous work, we presented a method for transforming a workflow into an equivalent graph that shows all possible paths that a workflow will take. In this paper, we use the results of that method for multiple workflows coming to a queue and use the famous pollaczek–khintchine formula to estimate the average waiting and completion time for submitted workflows. Then, we use different scheduling algorithms, namely, Shortest Job First (SJF) and Longest Job First (LJF) and compare them with First Come First Serve (FCFS).
概率云工作流的队列分析
云应用程序可以建模为工作流。这些工作流由有向无环图(dag)或非dag表示。该图显示了组成工作流的任务之间的关系以及这些任务之间的依赖关系。在我们之前的工作中,我们提出了一种将工作流转换为等效图的方法,该图显示了工作流将采取的所有可能路径。在本文中,我们将该方法的结果用于进入队列的多个工作流,并使用著名的pollaczek-khintchine公式来估计提交工作流的平均等待和完成时间。然后,我们使用了不同的调度算法,即最短作业优先(SJF)和最长作业优先(LJF),并将它们与先到先服务(FCFS)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信