{"title":"Fusion of Local Descriptors for Multi-view Facial Expression Recognition","authors":"Xuejian Wang, M. Fairhurst, A. Canuto","doi":"10.1109/BRACIS.2018.00104","DOIUrl":null,"url":null,"abstract":"Facial expressions can be seen as a form of non-verbal communication as well as a primary means of conveying social information among humans.Automatic facial expression recognition (FER) can be applied to a wide range of scenarios in human-computer interaction, facial animation, entertainment, and psychology studies. For feature representation in a FER system, various texture descriptors have been employed to derive an effective solution for this system. However, these individual texture descriptor-based FER systems have often failed to achieve effective performance in the recognition of facial expressions. In this sense, it is necessary to further improve the general performance of a facial expression recognition system, evaluating different feature representations. In this paper, a novel local descriptor for a facial expression recognition system is proposed, designated the level of difference descriptor (LOD). The main goal is to use this descriptor as a supplement to state-of-the-art local descriptors to further improve the performance of a FER system in terms of classification accuracy. Furthermore, the fusion of various texture features for devising a robust feature representation for multi-view facial expression recognition is presented.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Facial expressions can be seen as a form of non-verbal communication as well as a primary means of conveying social information among humans.Automatic facial expression recognition (FER) can be applied to a wide range of scenarios in human-computer interaction, facial animation, entertainment, and psychology studies. For feature representation in a FER system, various texture descriptors have been employed to derive an effective solution for this system. However, these individual texture descriptor-based FER systems have often failed to achieve effective performance in the recognition of facial expressions. In this sense, it is necessary to further improve the general performance of a facial expression recognition system, evaluating different feature representations. In this paper, a novel local descriptor for a facial expression recognition system is proposed, designated the level of difference descriptor (LOD). The main goal is to use this descriptor as a supplement to state-of-the-art local descriptors to further improve the performance of a FER system in terms of classification accuracy. Furthermore, the fusion of various texture features for devising a robust feature representation for multi-view facial expression recognition is presented.