Optimizing Hyperplane Sweep Operations Using Asynchronous Multi-grain GPU Tasks

A. Kaushik, Ashwin M. Aji, M. A. Hassaan, N. Chalmers, Noah Wolfe, Scott Moe, Sooraj Puthoor, Bradford M. Beckmann
{"title":"Optimizing Hyperplane Sweep Operations Using Asynchronous Multi-grain GPU Tasks","authors":"A. Kaushik, Ashwin M. Aji, M. A. Hassaan, N. Chalmers, Noah Wolfe, Scott Moe, Sooraj Puthoor, Bradford M. Beckmann","doi":"10.1109/IISWC47752.2019.9042134","DOIUrl":null,"url":null,"abstract":"General-Purpose Graphics Processing Units (GPGPUs) are employed in today's fastest supercomputers to accelerate a variety of scientific compute workloads. These workloads typically comprise of data-parallel mathematical kernels that are well suited for execution on GPUs. The hyperplane sweep operation is one such mathematical kernel that is commonly used in high-performance computing. In this paper, we characterize the conventional bulk synchronous hyperplane sweep implementation currently used by GPUs and identify significant performance improvement potential by breaking the operation into finer-grain tasks. Guided by this characterization, we propose multi-grain task decomposition and scheduling techniques to optimize the operation. We use KRIPKE as a case study that features the sweep operation, and we show that our proposed optimizations achieve 41% speedup over the bulk synchronous implementation.","PeriodicalId":121068,"journal":{"name":"2019 IEEE International Symposium on Workload Characterization (IISWC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC47752.2019.9042134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

General-Purpose Graphics Processing Units (GPGPUs) are employed in today's fastest supercomputers to accelerate a variety of scientific compute workloads. These workloads typically comprise of data-parallel mathematical kernels that are well suited for execution on GPUs. The hyperplane sweep operation is one such mathematical kernel that is commonly used in high-performance computing. In this paper, we characterize the conventional bulk synchronous hyperplane sweep implementation currently used by GPUs and identify significant performance improvement potential by breaking the operation into finer-grain tasks. Guided by this characterization, we propose multi-grain task decomposition and scheduling techniques to optimize the operation. We use KRIPKE as a case study that features the sweep operation, and we show that our proposed optimizations achieve 41% speedup over the bulk synchronous implementation.
使用异步多粒GPU任务优化超平面扫描操作
通用图形处理单元(gpgpu)用于当今最快的超级计算机,以加速各种科学计算工作负载。这些工作负载通常由非常适合在gpu上执行的数据并行数学内核组成。超平面扫描操作就是一种通常用于高性能计算的数学内核。在本文中,我们描述了当前gpu使用的传统批量同步超平面扫描实现,并通过将操作分解为更细粒度的任务来识别显著的性能改进潜力。在此特征的指导下,我们提出了多粒度任务分解和调度技术来优化操作。我们使用KRIPKE作为一个具有扫描操作的案例研究,我们表明,我们提出的优化比批量同步实现的速度提高了41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信