{"title":"Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components","authors":"M. Tangermann, J. Reis, A. Meinel","doi":"10.5220/0005663100320038","DOIUrl":null,"url":null,"abstract":"The power of oscillatory components of the electroencephalogram (EEG) can be predictive for the single-trial performance score of an upcoming task. State-of-the-art machine learning methods allow to extract such predictive subspace components even from noisy multichannel EEG recordings. In the context of an isometric hand motor rehabilitation task, we analyse EEG data of n=20 normally aged subjects. Predictive oscillatory EEG subspaces were derived with a spatial filtering method (source power comodulation, SPoC), and the transfer of these subspaces between five performance metrics but within data of single subjects was investigated. Findings suggest, that on the grand average of 20 subjects, informative SPoC subspace components were extracted, which could be shared between a set of three metrics describing the duration of subtasks and jerk characteristics of the force trajectories. Transfer to any other of the remaining four metrics was not possible above chance level for a metric describing the reaction time and a metric assessing the length of the force trajectory. Furthermore we show, that these transfer results are in line with the structure of cross-correlations between the performance metrics.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005663100320038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The power of oscillatory components of the electroencephalogram (EEG) can be predictive for the single-trial performance score of an upcoming task. State-of-the-art machine learning methods allow to extract such predictive subspace components even from noisy multichannel EEG recordings. In the context of an isometric hand motor rehabilitation task, we analyse EEG data of n=20 normally aged subjects. Predictive oscillatory EEG subspaces were derived with a spatial filtering method (source power comodulation, SPoC), and the transfer of these subspaces between five performance metrics but within data of single subjects was investigated. Findings suggest, that on the grand average of 20 subjects, informative SPoC subspace components were extracted, which could be shared between a set of three metrics describing the duration of subtasks and jerk characteristics of the force trajectories. Transfer to any other of the remaining four metrics was not possible above chance level for a metric describing the reaction time and a metric assessing the length of the force trajectory. Furthermore we show, that these transfer results are in line with the structure of cross-correlations between the performance metrics.