A New Cascading Model on Scale-Free Network with Tunable Parameter

Jianwei Wang, Lili Rong, L. Zhang
{"title":"A New Cascading Model on Scale-Free Network with Tunable Parameter","authors":"Jianwei Wang, Lili Rong, L. Zhang","doi":"10.1109/ICINIS.2008.8","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the cascading failure on BA networks with scale-free property based on a load redistribution rule. Assuming that the robustness is quantified by the critical threshold Tc, at which a phase transition occurs from normal state to collapse, we find the strongest robustness against cascading failures in the case of alpha =1, which is a tunable parameter in our model. We further discuss the correlations between the average degree <k> of BA network and Tc, and draw the conclusion that Tc has a negative correlation with the average degree <k>, i.e., the bigger the value of <k>, the smaller the critical threshold Tc. These results may be very helpful for real-life networks to avoid cascading-failure-induced disasters.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we examine the cascading failure on BA networks with scale-free property based on a load redistribution rule. Assuming that the robustness is quantified by the critical threshold Tc, at which a phase transition occurs from normal state to collapse, we find the strongest robustness against cascading failures in the case of alpha =1, which is a tunable parameter in our model. We further discuss the correlations between the average degree of BA network and Tc, and draw the conclusion that Tc has a negative correlation with the average degree , i.e., the bigger the value of , the smaller the critical threshold Tc. These results may be very helpful for real-life networks to avoid cascading-failure-induced disasters.
参数可调的无标度网络级联模型
本文研究了基于负荷重分配规则的无标度BA网络的级联故障问题。假设鲁棒性是通过临界阈值Tc来量化的,在这个阈值Tc上发生了从正常状态到崩溃的相变,我们发现在alpha =1的情况下,对级联故障的鲁棒性最强,这是我们模型中的一个可调参数。进一步讨论了BA网络平均度与Tc的相关性,得出Tc与平均度呈负相关的结论,即值越大,临界阈值Tc越小。这些结果可能对现实生活中的网络避免级联故障引起的灾难非常有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信