Localizing mobile RF targets using multiple unmanned aerial vehicles with heterogeneous sensing capabilities

D. Pack, G. York, G. Toussaint
{"title":"Localizing mobile RF targets using multiple unmanned aerial vehicles with heterogeneous sensing capabilities","authors":"D. Pack, G. York, G. Toussaint","doi":"10.1109/ICNSC.2005.1461264","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of locating a mobile radio frequency (RF) target using multiple unmanned aerial vehicles (UAVs) equipped with sensors with varying accuracies. We investigate the localization task performance as we vary (1) the configuration of multiple UAVs (sensor locations), (2) the type of sensors onboard the UAVs, and (3) the sensor sequence. We use the well known optimal recursive estimation techniques (Kalman filtering) to combine captured sensor values from multiple UAVs and to investigate sensor scheduling issues to minimize the target location error. We present our findings in the form of simulation results.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we consider the problem of locating a mobile radio frequency (RF) target using multiple unmanned aerial vehicles (UAVs) equipped with sensors with varying accuracies. We investigate the localization task performance as we vary (1) the configuration of multiple UAVs (sensor locations), (2) the type of sensors onboard the UAVs, and (3) the sensor sequence. We use the well known optimal recursive estimation techniques (Kalman filtering) to combine captured sensor values from multiple UAVs and to investigate sensor scheduling issues to minimize the target location error. We present our findings in the form of simulation results.
利用具有异构传感能力的多架无人机定位移动射频目标
在本文中,我们考虑使用多架配备不同精度传感器的无人机定位移动射频(RF)目标的问题。当我们改变(1)多架无人机的配置(传感器位置),(2)无人机上的传感器类型,以及(3)传感器序列时,我们研究了定位任务的性能。我们使用著名的最优递归估计技术(卡尔曼滤波)来组合从多架无人机捕获的传感器值,并研究传感器调度问题,以最小化目标定位误差。我们以模拟结果的形式呈现我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信